# ポジトロニウム超微細構造の 精密測定実験

東京大学素粒子物理国際研究センター 難波俊雄 Fundamental Physics Using Atoms @ 東工大 ('09/8/4)

## Ps HFS 測定

- 東大物理&素粒子センター
   小林富雄、浅井祥仁、難波俊雄、末原大幹、秋元銀河、石田明、佐々木雄一、宮崎彬、加藤康作
- 東大総合文化
  - 斎藤晴雄
- KEK 低温センター&加速器
   山本明、田中賢一、吉田光宏
- 福井大遠赤外センター
   山原敏孝、小川勇、小林真一郎、漆崎裕一
- ・ブルガリア科学アカデミー

– S. Sabchebski



- ーレプトンニ個だけから成る最も軽くて簡単な「原子」
- 東縛系 QED によって記述
- 基底状態 (1S) は、スピンの状態に応じて二種類の状態
  - 1<sup>3</sup>S<sub>1</sub> (triplet、spin=1): オルソポジトロニウム (o-Ps)
    - τ=142ns、3γ、(5γ、7γ…)に崩壊
  - 1<sup>1</sup>S<sub>0</sub> (singlet、spin=0): パラポジトロニウム (p-Ps)
    - τ=125ps、2γ、(4γ、6γ…)に崩壊



水素原子と同様に、 多彩なレベルが 存在する

•基底状態の束縛エネル ギー: 6.8eV (水素原子の 半分)

●n 軌道準位 E=-1/n<sup>2</sup>

•Spin-Orbit相互作用

•Spin-spin相互作用

それぞれの準位間の エネルギーや寿命の 精密測定



#### 基底状態の Ps の二つの状態



偶数本のガンマ線へ

## PsのHFSの値は、ズレている



束縛系 QED による理論計算値と実験値との間に 3.9σのズレ

### 超微細構造のズレが何を意味するか

- 理論計算が間違っている
  - 自由粒子の QED 計算と違い、束縛系の計算はそれなりに難しい
  - 3次の項の計算も、今世紀に入ってから
- 各測定に (共通の?) 間違いがある
  - なんとなく、心当たりはあります(われわれの測定では改善)
  - 後述します
- 未知の物理の可能性
  - 相互作用の弱い未知の粒子の介在
  - 重い粒子には感度が弱いが、g-2と違い、
     s-channelの効果も見える
    - (例えば、O(MeV)、α~10<sup>-8</sup>の擬スカラー)
  - o-Ps の場合、余剰次元にも感度



### われわれが、はっきりさせましょう

## HFS 測定: 二つの方法

- 直接遷移測定
  - HFS 遷移を直接起こして測定
  - 今まで、行われた事はない
- ・ゼーマン効果を用いた間接測定
  - - 静磁場によるゼーマン効果を用いて、HFS の準位
     を RF 帯に変換
  - 今までは、ほぼすべてこの方法で測定

われわれは、両方のアプローチで HFS をそれぞれ測定します

## 直接遷移測定

### 世界初?のミリ波分光実験

### 直接遷移測定



### ただし、今まで直接遷移実験は行われていない





### ただし、今まで直接遷移実験は行われていない

### 問題点 2





ジャイロトロン+1次元ファブリーペロー共振器



### 予定通りミリ波を印加した場合に 予想される遷移曲線



(フロアの部分は delayed coincidence によって除去可能)

## ジャイロトロン

- 福井大 FU CW V
   (当実験用に設計/製作)
  - CW 100W 出力可能
  - 中心周波数 203.08 GHz (実測値、 変調は計画中)
  - 単色性 ~10kHz
  - 今回のミラー試験では 20% duty でピーク出力 200W で運転 (平均 出力 40W)



ー次元ファブリーペロー共振器



- 向かい合わせた二枚の鏡
- 鏡の間の距離を波長に合わせてやる事で、共振をおこし、ミリ波を蓄積
- 今回は、片面は凹面鏡(少々設置精度が悪くてもOK)
- 中に蓄えられるエネルギー密度は、2F/π 倍になる。
   (F: finesse、共振器の出来のよさを表すパラメータ)
- 設計にあたって重要な点
  - ミラーでの損失を小さくする事 (finesse を上げる事)
  - ジャイロトロンからのミリ波をロス無く導く事
- 今回は、カップリングに金属メッシュミラーを作成して試験

実際のセットアップ

### 平板メッシュミラーでカップリング、反対側は銅製の凹面鏡(R=10cm)









- 平面石英基板に金蒸着
- 厚さ1µm (>>ミリ波のスキ ンデプス=168nm)
- メッシュの間隔と太さで反 射率、透過率を調整

可視光では透けて見えるが、ミリ波では反射率
 99%以上の鏡(のはず)

### 金属メッシュミラーを用いた測定

- ・ピエゾステージを移動させる事で、共振器長を変化
- 共鳴の幅の鋭さから、finesseを求めた





## 間接遷移測定

### 過去の実験の系統誤差をつきつ め、ppmの精度を目指す

## Zeeman効果を用いた間接測定の方法

0,  $E_{o-Ps}$ 

 $E_{p-\mathrm{Ps}}^{-203}$ 

今回測るのはこちら

 $|+> (m_z=0)$ 

 $|\uparrow\uparrow\uparrow\rangle, |\downarrow\downarrow\downarrow\rangle$ 

203.4 GHz

 $\Delta_{
m HFS}$ 

3GHz

mix

 $(m_z = \pm 1)$ 

∆<sub>mix</sub>から

磁場をかけると、 o-Psの(S=1, m<sub>z</sub>=0)と p-Ps(S=0, m<sub>z</sub>=0)が混合し エネルギー準位が分裂 (Zeeman 効果)

Δ<sub>mix</sub>は、9 kG 程の磁場中で
 約 3 GHz ->マイクロ波なので
 大強度での利用が十分可能。
 -> この遷移を起こさせると2γ崩壊の
 確率が高くなることを利用して測定。



## 過去の実験と問題点

RF Cavityにガスを入れて β+線からポジトロニウムを生成 MAGNET POLE マグネット コイル CROWAVE LEAD COLLIMATOR NgI(TI) CRYSTAL GAS MAGNETIC SHIELDS CAVITY MICROWAVE OUTPUT Nal(TI)シンチレータで Back-to-backに測定 「磁石の神様」V. ヒューズらの 実験セットアップ(80年代前半)

問題点1. 磁場の非一様性

磁場の不定性がそのまま 測定結果の主な系統誤差に。 一方、ポジトロニウムの 生成領域は数cmに及ぶ。 -> 大きなサイズでppm精度での 磁場制御は非常に困難。

問題点2.物質の効果

過去の実験では、物質の効果 (Psの熱化過程)を正しく評価せず。 90年代、「オルソポジトロニウム の寿命問題」で、この効果が 深刻な系統誤差を生むことを 我々が示した。 <sup>23</sup>

### 我々の間接測定のセットアップ @KEK 低温棟



中心部のセットアップ (磁石ボア中心)



## RF キャビティ



## ガンマ線検出器



LaBr<sub>3</sub>(Ce)シンチレータ (直径1.5インチ、長さ2インチ) を6個使用 ファインメッシュPMTで 読み出し



ベータ線タギング

- チェンバーに入射の β<sup>+</sup> 線を、プラスチックシンチ レータでタグ
- イベント毎に、ポジトロニウムの生成から崩壊ま
   での時間がわかる



これにより、

•S/N を大幅に改善できる

物質が HFS に与える影響の
 正確な評価ができる

### 物質の効果は、ポジトロニウム生成後、 熱化されていくうちに変化する



### 実験の現状

- 6月から第1回測定中(9月末までの予定)
- RFによる遷移を明瞭に観測



## 現在、磁場のスキャンにより、共鳴 カーブを出しているところ

・2週間の測定での暫定値

ΔHFS=203.399±0.005(23ppm. stat.)±0.029(140ppm sys.) GHz



## 現在の課題:磁場

![](_page_31_Figure_1.jpeg)

- 磁場補正コイルを設計中
- ppm の均一性
- 第2次測定でppmの精度を

![](_page_31_Picture_5.jpeg)

まとめ

- ポジトロニウムの HFS はずれており、新しい 物理を示唆している可能性がある。
- 過去の系統誤差をふまえた上で、二つの新し
   い測定
  - ミリ波を用いた直接遷移実験
    - →世界初のミリ波領域での分光実験
  - 大型超伝導磁石を用い、時間タギングを行った 間接遷移実験

→ppmの精度での HFS 測定

・それぞれ、一年以内程度で結果が出る予定