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Fundamental questions 
• How universe began? 
• How matter created? 
• How 4-forces unified 
   in the “ultimate theory”? 
• What is Dark Matter? 
etc… 
Particle Physics’ approach 
Fundamental things are 
“hidden” in higher-energy 
world! Need to investigate 
• Directly, or 
• Indirectly 
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Direct detection 
energy frontier collider (LHC) 
create particle up to TeV 
directly by 8 TeV collision 

Asai on NHK 

Higgs found at 126 GeV 
in 4th July 2012 
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Indirect detection 
Observing “rare phenomena” 
in lower energy particles to look 
at effects from “higher” scale 

ex.1) b-factory @KEK 
observing rare b-meson 
(~5 GeV) interaction 
to look for new physics 

Japanese novel prize 
winners on b-physics 
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Indirect detection 
Observing “rare phenomena” 
in lower energy particles 
to look at “higher” scale 

“Higgs factory” -  
precise measurements of 

Higgs for new physics 

0.5 – 1 TeV e+ e- collider 
to be built until mid 2020s 
(10 years construction) 

ex.2) International Linear Collider 

30 km straight line 

Japanese 
minister of 

science stated 
promotion of 

ILC, Jan 2013 
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Our experiment 
observing rare 
conversion involving 
heavy particle using 
high-intensity photons 

光
子 

heavy particle 
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2. ALP (Axion-like particle) 
 ・ Axion（pseudo-scalar） 
  CP problem in QCD 
 ・ Dilaton（scalar） 

1.  Paraphoton (hidden photon): 
 Extra U(1) Gauge Boson 

photon ↔ paraphoton osc. 

virtual photon 
from magnetic field 

(real) photon 
parallel polarization 
perpendicular pol. 

Paraphoton photon 

ALP 
Axion 
Dilaton 

Paraphoton and ALPs 

Looking for rare conversion between photons & paraphotons 

Looking for rare conversion within strong magnetic field 

first target 
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Current Limit for Paraphoton 

10-7 

1eV 1µeV 
‘empty region’ 



Taikan Suehara et al., IS Dev. THz Gyrotrons & Apps. @ Fukui-U, 14 Mar. 2013  page 10 

Current Limit for Paraphoton 

10-7 

1eV 1µeV 
‘empty region’ 



Taikan Suehara et al., IS Dev. THz Gyrotrons & Apps. @ Fukui-U, 14 Mar. 2013  page 11 

• Strong light source and sensitive detector are keys 
• Searchable paraphoton mass depends on photon E 

‘Light Shining through a Wall’ (LSW) 

Light 
source 

detector 

photon photon 

conversion 

paraphoton 

shielding 

photon energy 

conversion length 

conversion prob. 

paraphoton mass 
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• Laser (532 nm) + Fabry-Perot cavity 
– 1.2 kW accumulation 

• Magnet for ALP search(5T x 8.8m) 
• Cooled CCD detector (single photon detection) 

LSW with laser: ALPS@DESY 
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Magnified View (~ meV) 

Laser LSW 
sensitive at > 0.5 meV 

‘pit’ at 0.1 meV 

meV (THz) photons! 

LSW with THz photons can cover the 0.2 meV region! 
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• Strong light source in THz 
– Gyrotron with Fabry-Perot cavity 
– Number of photons at the same power 

is 1000 times larger in THz photons than in 
visible photons 

• Sensitive detector 
– More difficult than visible photons 

because of lower energy 
– Superconducting detector 

 

Key components for THz-LSW 
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Setup of THz-LSW exp. 

• Fabry-Perot cavity in room temp. 
• Photon-paraphoton mixing between 
  shield & separation mirror 
• Separation mirror to determine 
  photon/paraphoton state 
• Detection in 4 K chamber 

shield 
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Setup shared with Ps-HFS exp. 

detector lens 

Gyrotron 

M1 

M2 

“wall” 

M3 

vacuum 
chamber 

cryogenic 
chamber 

photons 

paraphotons 

being used by Ps-HFS exp. 

additional 
devices for 
paraphoton 

search 

Fabry-Pérot 
Cavity 
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Gaussian beam converter 
【Gyrotron FU CW GI】 
•  201-206 GHz 
    (cavity replaceable) 
•  ~300 W Gaussian 
    with internal 
    mode converter 
•  line width: ~1MHz 
    (at good condition) 
•  duty up to 50% 
    up to 20 Hz 
•  assembled for 
    Ps-HFS exp. 

window 



Taikan Suehara et al., IS Dev. THz Gyrotrons & Apps. @ Fukui-U, 14 Mar. 2013  page 18 

Fabry-Perot Cavity 
One-dimensional cavity 

• high density (optical confinement) 
• free cavity length 

Au mesh (200µm width, 360µm period, 
 1µm thick) depleted on quartz or silicon 

 99% reflection, ~0.7% transmission @ 203 GHz 

20-30kW accumulated 
(water cooled silicon) 

mesh melted at 20KW with quartz 

Maintain resonance by controlling 
cavity length with a piezo stage 
( < 100nm resolution) 
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Superconductor-Insulator-Superconductor 
tunnel junction detector 
(SIS or STJ) 

• Used in radio-astronomy 
– Nobeyama observatory 

(tuned to 230 GHz) 
• Nb superconductor 

– 4K operation 
• Heterodyne detection 

– Fundamental mixer 
– Suitable for narrowband 

feature of gyrotron 

Superconducting Detector 

6cm 
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SIS setup / detection system  

GUNN 
oscillator 
(68GHz) 

phase-lock 
module 

freq lock part of power 

clock (100MHz) 

freq 
tripler 

variable 
attenuator SIS 

LO 

bias/IF 

isolator 
DC 

HF 
bias 

voltage 

HEMT amp. room temp amp. 

oscilloscope 
(FFT) 

cold chamber 

RF 
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SIS performance test w/ blackbody 

LO 

oscilloscope 

LO power 

IF 

HEMT PS 

mirror 

2nd amp 

SIS bias PS 

SIS & HEMT on 
4K-cooled stage 

blackbody radiator 
(room tmp. or cooled) 70K shield 

• Using 2-stage GM refrigerator 
   (0.5 W @ 4K stage) 
•  70GHz GUNN + tripler used 
   for LO input 
• 296K, 194K & 77K blackbody 
   (with coolant under radiator) 
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SIS performance test w/ blackbody 

LO ON 
Fit 
LO OFF 

bias voltage 

SI
S 

cu
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output freq 

@ 207 GHz LO, 6.9 K 

ou
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ut
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er

 
DC characteristics response of blackbody input 

•  Josephson junction seen 
   (bump at around 2.2 mV) 
•  Plateau at around 2 mV with LO 
•  Height of plateau reasonable 

•  Difference on blackbody 
    temperature seend 
•  Noise temp. calculated 
    to be ~ 200K 

suitable for  
SIS operation 

1.85 mV bias 
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Expected Sensitivity (1st step) 

25 kW accumulation 
2 MHz linewidth 
 (LO 1.8MHz, Gyrotron1MHz) 
225 K noise temp. 
10% efficiency 
8640 sec x 3 livetime 

conditions 

The most powerful measurement around 0.1-0.2 meV 
(max. factor-2 improvement) 
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Future plan (1) High-power setup 
Using gyrotron with higher power (ex. MW class) 

Problems 
•  Reflection from cavity 
•  Heat dissipation at cavity 

Cu grating! 

Ring cavity 

Cu 
Cu 

Input 

Reflection 

0th order  
reflection 

1st order  
reflection 

Input 

Power 

•  Water cooling 
•  Reflection can be dumped 

Reflection dump 
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• Sensitivity of heterodyne detectors is limited 
by shot noise -> direct detection! 

• “Single photon detector” 
– fast (nanosec response), relatively broadband 
– lower temperature – 300 mK (pulse-tube cooler) 

with low-Tc material (Al etc.) 
• SIS direct detector is under development 

(mainly for CMB polarization measurement) 
• Ultimate sensitivity – 300mK blackbody 

(less than 10-10 compared to 4K) 

Future plan(2) Single-photon detector 
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Sensitivity of future plans 
Paraphoton limits 

current setup 

1MW 
1MW 2-cavity 

single photon 
(300mK ultimate) 

single + 1MW 2-cavity 

Axion limits (1MW 1-cavity 
with ALPS-like magnet) 

Big improvements in paraphoton/ALP search seen! 
“pit” on paraphoton search fully covered with 

1MW gyrotron or single photon detector 
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• Hidden particle search with THz wave 
– World highest sensitivity for ~0.2 meV paraphoton 

• Using a gyrotron as the photon source 
– 300 W, 200 GHz, 25 kW accumulated in cavity 

• SIS heterodyne detection for the first step 
– Result will be seen this summer (hopefully!) 
– Max. factor-2 improvement 

• Upgrade of power source or detector 
will lead to drastic improvement 
of search power! 

Summary 
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