ポジトロニウム超微細構造の 量子振動を用いた測定

東大理、東大素セ^A、KEK^B、東大院総合文化^C

<u>佐々木雄一</u>、 宮崎彬、 石田明、 末原大幹^A、 難波俊雄^A、 浅井祥仁、 小林富雄^A、田中賢一^B、山本明^B、 斎藤晴雄^c、池野正弘^B

日本物理学会 2009年秋季大会 甲南大学岡本キャンパス

ポジトロニウムと ポジトロニウム超微細構造について

ポジトロニウム(Ps)のエネルギー準位と超微細構造(HFS)

- e⁺e⁻の束縛系
 spin=1 : オルソポジトロニウム (o-Ps, 3γ崩壊, τ=142ns)
 spin=0 : パラポジトロニウム (p-Ps, 2γ崩壊, τ=0.125ns)
- o-Ps とp-Ps の間のエネルギー差 HFS = 203GHz (0.84meV) (c.f. H原子のHFS=1.4GHz)
- Spin相互作用に由来
 +高次の量子補正が効く

エネルギー準位

何が面白いのか? レプトンペアのクリーンな系 →精密な予測、測定が可能 o-Psは光子と同じ量子数 →未知粒子Xが介在する反応 p-Psは真空と同じ量子数

Yuichi Sasaki

HFSの値は実験と理論で乖離している

過去の実験と我々の方針

<磁場が変わったときのPsエネルギー準位><過去の実験>

Yuichi Sasaki

ポジトロニウム超微細構造の 量子振動による測定の概要

振動の周期 → (HFS×磁場の関数)⁻¹ → PsのHFSの測定

Ps-HFSの量子振動による測定の概要(2/3)

欲しい量子重ね合わせ状態を 作るためには、 1、偏極しているβ+を使う 2、偏極の向きを磁場と直交にする 量子状態間の振動 →3y崩壊における "γ線が飛ぶ分布"の振動 y線が飛びやすい方向が、

φ=135°、315°(正位相)
φ=45°、225°(逆位相)
の間を交互に入れ替わる

< γ線の飛ぶ向きを 半径の大きさで表した絵>

実線:t=0 破線:半周期後(t=T/2)

8

Ps-HFSの量子振動による測定の概要(3/3)

<検出器に入るγ線の数の時間変化(寿命曲線)>

セットアップ

セットアップ(線源まわり)

線源:⁶⁸Ge-Ga、30kBg 高いEnd Point Energy(1.9MeV) →大きな偏極率(平均0.86) →大きな振幅 プラシン:500µm厚、 線源を挟んでぴったり貼り付け エアロゲル:SiO₂、0.11g/cc、 Φ 10mm×10mm DAQで採るうち1割程度がo-Ps ライトガイド: Φ20mm、全長400mm 真空容器の外のPMTに光を導く 真空容器:ロータリーポンプで常時真空引き →O,によるPick offを減らす

<真空容器に固定したアクリル棒>

<プラシンのエネルギースペクトル>

セットアップ(γ線検出器)写真

Yuich**i S**asaki

ー様磁場を作る磁石と8GHzダイレクトクロックTDC

一様磁場

- KEKの大型超伝導磁石を使用
- ±5mmの範囲で20ppmの均一性

8GHz動作のダイレクトクロックTDC

- クロックを直接カウントするタイプの TDCをKEKと新規に開発
- 最高8GHz動作(今回は5GHzで使用)
- 詳細は池野の発表(10pSB-7)を参照

Yuichi Sasaki

取得したデータ量と典型的なスペクトル

フィット方法

- 6個のデータを同時に使ってフィットする
- フィット関数は、

$$f(t) = Ae^{-\gamma_1 t} + Be^{-\gamma_2 t} + Ce^{-\frac{\gamma_1 + \gamma_2}{2}t} \sin(\Omega t + \theta_0) + D$$

(γ1、γ2、Ωは共通、それ以外は各検出器ごと)

フィット範囲は30ns ~ 1430ns (プロンプトのテールが十分落ち着いた所)
 <寿命曲線の拡大図>

フィットの一例@100mT,偏極上向き,検出器#1

パラメーター	値	意味
$A_{\#1}$	5900±130 など	寿命 γ_1 成分のexpの定数
$oldsymbol{B}_{\#1}^{^{''}}$	3600±140 など	寿命 γ_2 成分のexpの定数
$oldsymbol{C}_{\#1}$	537±15 など	振動成分のexpの定数
$oldsymbol{D}_{\#1}$	511.3±0.8 など	アクシデンタルの定数
$oldsymbol{\gamma}_1$	0.00736 ± 0.00003	o-Psの崩壊率[ns⁻¹]
γ_2	0.01038 ± 0.00009	磁気クエンチしたo-Psの崩壊率[ns ⁻¹]
Ω	0.24565 ± 0.00016	振動成分の角振動数[rad/ns]
$(heta_0)_{\#1}$	1.27±0.03 など	振動成分の初期位相[rad]
χ^2 / ndf	1.02	Reduced chi square (ndf = 1400)

フィット範囲を少しずらしてもconsistent ※ χ²/ndfは最悪でも1.05以下。 A,B,C,D,θ₀は個々の検出器について値があるので、ここでは一例を示している

結果

- 熱化が問題になる精度では無い
- 磁力計の読みの誤差 70ppm(HFSには二乗で効く) が飛び抜けて大きい

→これが系統誤差

まとめ

- •ポジトロニウムのHFSは理論と実験とで3.9σずれている。
- ・我々は量子振動を用いて、このHFSを測定する実験を行った。
 ・結果は

203.328 ± 0.044(stat.) ± 0.028 (sys.)GHz

(215ppm) (140ppm)

•この値は、フィット方法、フィット範囲、エネルギーカット等を変えても

consistent。

•実験(Mills, Ritter, et al)の 203.388 65GHz とも1o以内で一致しているが、エラーが大きいため理論(Kniehl et al., 2000)の 203.39169GHz とも一致している。

・精密な測定については、次の3GHz測定、203GHz測定を参照。

バックアップ

物質の効果一熱化過程とは

•Ps生成時運動エネルギー1 eV
 →室温の運動エネルギー1/30 eV
 になる過程

・物質の密度が小さい場合
 →単位時間当たりの衝突回数
 が減って遅い熱化
 →高いpick-off rateが長い時間続く

pick-off rateは物質と時間の関数! (この関数を別途実験で求めてやる ことで補正が可能)

1980年代のo-Ps寿命問題の原因となった過程 今回の3GHz実験でも原因となりうる (おおざっぱな見積もりでは、補正は理論との差を減らす向きに働く)

Ps-HFSの量子振動による測定の概要(3/3)

<検出器に入るγ線の数の時間変化(寿命曲線)>@100mT(26ns周期)

赤: φ=45°(正位相)にある検出器 青: φ=135°(逆位相)にある検出器 緑: φ=90°にある検出器

 $\Omega \rightarrow$ 振動周期 \rightarrow HFS

セットアップ(γ線検出器)(1/2)

LaBr3シンチレータ: 時間分解能(FWHM:210ps)、 エネルギー分解能(FWHM:4%) @511keV,100mT PMT:すべてfine mesh(H6614)、 磁場と平行に配置 PMTホルダ:アルミで製作

<LaBr₃二個の時間差>

<製作したPMTホルダ>

Yuichi Sasaki

解析方法は大きく二つ

逆位相同士を引き算する方法

- 正位相、逆位相のヒストグラムを 引き算してexp成分を消す。
- 熱化等expをゆがませる成分を キャンセル出来る。
- 時間分解能の差で二倍高周波 が出来てしまう可能性。

そのままフィットする方法

- 素直に (exp+減衰振動)
 でフィットする。
- 6個を同時にフィットする。
- おかしな成分がでてくることはない。

オフラインでのカット

<シングルフォトンカット>

- 1イベントに鳴ったLaBr₃が一つだけのイベントを選ぶ
- →1、理論では1γを考えている
 - 2、p-PsのBack-to-Backを減らす

1イベント中でいくつのLaBr₃が鳴ったか

ヒット数	割合[%]
1	78.7
2	20.1
3	1.2

 100keV以下を捨てる
 →1、振動成分の分布は低エネル ギーで少ない
 2、ゴミイベントの除去

これらのカットはS/Nにしか効かず、振動成分の周波数をずらすことは無い

逆位相同士を引き算したフィット

- 同位相にある検出器のヒストグラムは足して、
 逆位相にある検出器のヒストグラムは引く
- フィット関数は、 $f(x) = Ae^{-\gamma_1 t} + Be^{-\gamma_2 t} + Ce^{-\frac{\gamma_1 + \gamma_2}{2}t} \sin(\Omega t + \theta_0) + D$
- $(A, B, Dは引き算が不完全な時のための保険。<math>\gamma_1, \gamma_2$ は不定性が大きい。)
- フィット範囲は16ns ~ 1416ns。プロンプトのテールがキャンセル出来るのでフィット範囲をかなり前に出来る。

<引き算後の寿命曲線とフィット>

そのままフィットでのHFS値一覧

呼び名	偏極 の向 き	磁場の値[mT]	振動周期[ns]	HFS[GHz]
100	上	100.594 ± 0.007	0.24565 ± 0.00016	203.24 ± 0.13 (658 ppm)
100	下	100.592 ± 0.007	0.24585 ± 0.00014	203.07 ± 0.12 (567 ppm)
118	上	118.826 ± 0.010	0.34264 ± 0.00032	203.30 ± 0.19 (870 ppm)
118	下	118.824 ± 0.010	0.34265 ± 0.00030	203.29 ± 0.18 (930 ppm)
118×	上	118.825 ± 0.010	0.34219 ± 0.00035	203.57 ± 0.21 (1023 ppm)
135	上	134.807 ± 0.007	0.44109 ± 0.00027	203.24 ± 0.12 (614 ppm)
135	下	134.805 ± 0.007	0.44057 ± 0.00023	203.48 ± 0.11 (517 ppm)
138	上	138.330 ± 0.007	0.46411 ± 0.00025	203.39 ± 0.11 (532 ppm)
138	下	138.326 ± 0.007	0.46394 ± 0.00028	203.45 ± 0.12 (604 ppm)

※TDCが8GHzでのRunだった。

平均:HFS = 203.328 ± 0.044(stat.)GHz(215 ppm)

引き算フィットでのHFS値一覧

呼び名	偏極 の向 き	磁場の値[mT]	振動周期[ns]	HFS[GHz]
100	上	100.594 ± 0.007	0.24559 ± 0.00014	203.29 ± 0.11 (552 ppm)
100	下	100.592 ± 0.007	0.24579 ± 0.00012	203.12 ± 0.10 (505 ppm)
118	上	118.826 ± 0.010	0.34286 ± 0.00026	203.17 ± 0.16 (767 ppm)
118	下	118.824 ± 0.010	0.34249 ± 0.00025	203.38 ± 0.15 (738 ppm)
118×	上	118.825 ± 0.010	0.34222 ± 0.00029	203.55 ± 0.17 (845 ppm)
135	上	134.807 ± 0.007	0.44105 ± 0.00022	203.26 ± 0.10 (497 ppm)
135	下	134.805 ± 0.007	0.44059 ± 0.00018	203.47 ± 0.09 (415 ppm)
138	上	138.330 ± 0.007	0.46421 ± 0.00021	203.34 ± 0.11 (520 ppm)
138	下	138.326 ± 0.007	0.46401 ± 0.00024	203.42 ± 0.12 (604 ppm)

※TDCが8GHzでのRunだった。

平均:HFS = 203.333 ± 0.037(stat.) GHz (181 ppm)

スピン緩和による振動の減衰

- 物質の効果によってPsのスピンが交換
 →振動の減衰として見られるはず
- ミドリの線:フィッティングの不定性
- これから外れると有意に振動が減衰しているといえる

2寿命成分の分離

- 磁場によるp-Psとo-Psの混合
 →"o-Psの寿命成分" と "短くなった寿命成分" が出る
- 青が0mTのデータから求めた理論値
- ・ 短い寿命成分は短く出てしまう→減衰振動の項が値を引っ張っている?
- この寿命成分の分離は振動周期とはほぼ独立→HFSには効かない

そのままフィットでのフィッティング開始点に対する値の安定性

量子振動の周期

密度行列

<偏極したβ+が無偏極のe-に入射してPsを作る際の密度行列>

(θ,φ):磁場に対するβ+の偏極方向 P:β+の偏極率 磁場による混合は無視している

で囲った項が重ね合わせ 状態を作るのに効く

→磁場と直交したβ+偏極が必要

Yuichi Sasaki

エレキ

delay : 200ns

Yuichi Sasaki

詳細な回路図

タイミングチャート

セットアップ(磁石)

<大型超伝導磁石>

磁場の均一性:±5mmの範囲で20ppm 磁場の測定:NMRを用いた磁力計、 absoluteな精度は100ppm程度

磁石:KEKの大型超伝導磁石

<PMT等の磁石への固定の様子>

8GHz TDC

振動の周期を正しく測る → 正確なTDCが不可欠 →8GHz動作のDirect Clock TDCを製作した *Integrated None Linearity 無し *Differential None Linearity は、 4binをまとめればほぼ見られなくなる (ただし、安定性の問題から今回は5GHzで使用)

<ランダムクロックによるTDCスペクトル> 8GHz動作時

<8GHz TDC> く左図のフーリエ変換>

磁場の強さと測定例

<磁場の強さの一覧(実測)>

<磁場の測定値の一例(138mT)>

γ線の出る方向分布

<γ線の出る方向の確率分布>

