サブテラヘルツ波を用いた ポジトロニウム超微細構造の 精密測定II (設計した検出器とシグナルの見積もり) 東大理、東大素セ^A、東大院総合文化^B、福井大遠赤セ^C、 ブルガリア科学アカデミー^D

宮崎彬,末原大幹^A,

石田明, 秋元銀河, 佐々木雄一 難波俊雄^A,浅井祥仁, 小林富雄^A, 斎藤晴雄^B, 小川勇^c, 出原敏孝^c, 漆崎裕一^c, S.Sabchebski^D

> 日本物理学会 2009年秋季大会 @甲南大学岡本キャンパス

- 何を観測するのか?
- 設計した検出器
- ・シミュレーションにあたって考慮したイベント
 - –シグナル

– バックグラウンド

- Geant4によるSimulation
- Conclusion

- o-Ps(寿命142ns)がサブミリ波によってp-PS(寿命 125ps)に遷移
- p-Psは2γ崩壊
- サブミリ波が共鳴条件を満たすときと、そうでないとき で2γ崩壊と3γ崩壊の比を調べる

設計した検出器

検出器(1)全体像

検出器(2)

- ²²Na (700kBq) e⁺
 - プラスチックシンチ レータ(100µm)でタグ
- ライトガイド
 - 光をPMTへ
- 鉛コリメータ
 - Cavity内へe⁺をコリ メート

• Vetoシンチレータ

• Cavityの4面を覆

ないe⁺をVeto

検出器(4)

- Back-to-back selection
 - ・ 左右ともにγ線検出
 - バックグラウンドの除
 去に必要

シミュレーションにあたって考慮 したイベント

シグナル(1)

- ²²Na線源から出たe⁺
 プラスチックシンチレータ を鳴らす
 - Veto用シンチレータを鳴 らさない
- Cavity内でo-Ps形成
 一確率: 20%×75%
- Cavity内のサブミリ波に よってp-Psに遷移
 - 生成したo-Psのうち、遷 移する<u>平均確率0.6%</u>

Couplingを加味したジャイロト ロン入力50W、 F=628を仮定

シグナル(2)

- p-Psに遷移後
 511keVの2γにback-toback崩壊
- LaBr₃でback-to-backの
 511keV γ線を検出

3γ崩壊

- o-Psはそれ自身3γ崩 壊をする
- そのうち1つを片側
 で、もう2つを反対
 側の同じ検出器で
 検出した場合、2γ崩
 壊だと誤認
- Back-to-back
 +511keVのselection
 でも落とせないBGとなる

アクシデンタル(1)

- 線源rate 700kBq
- 162kHzで鳴る
- Timing window 200nsecを予定
- 確率3.2%でアクシデンタル発生

このe⁺によるpositroniumが 崩壊する前に、他のイベント のγ線が来るとアクシデンタ ルとなる

アクシデンタル(2)

- ²²Naから放出される 1275keVのγ線
- Cavity内に行かない
 e⁺のprompt崩壊
 511keVのγ線
- 2γと誤認

Pick-off

- o-Psが物質と相互作用
 周りのe⁻とo-Ps中のe⁺が 対消滅(pick-off)
- サブミリ波による遷移と
 区別がつかない
 - 一確率はo-Psに対して平
 均3.5%
 - シグナルの5~6倍の バックグラウンド

Geant4によるシミュレーション

シミュレーションしたもの

- シグナルrateとバックグラウン ドrateを見積もる
- Event generation
 - 2γ崩壊するe⁺と1275keVのγ線
 - ガス中で3γ崩壊するe⁺と 1275keVのγ線
- 前者
 - シグナルの見積もり
 - Pick-offの見積もり
 - アクシデンタルの見積もり
- 後者

- 3γバックグラウンドの見積もり

 それぞれに各種の確率をかけ て最終的なrateとした

プラスチックシンチレータ しきい値20keVを予定

(例1) 2γ+1275keVのLaBr₃スペクトル

黒のスペクトラムはLaBr₃1つで検出されるエネルギー これにback-to-back+511keVのselectionとCavity内で停止する条 件を課し、o-Ps生成確率20%×75%をかけ、シグナルには遷移確 率0.6%、pick-offにはpick-off確率3.5%をかける。(図はシグナル)

(例2) 2γ+1275keVのアクシデンタル

β-tag用プラシンを鳴らさず、back-to-backの相手に511keV±1σを 要求。これにアクシデンタル発生確率3.2%をかける。

黒のスペクトラムは3γを1つのLaBr₃で検出したもの Cavity内で停止したe⁺に対しback-to-backの相手に511keV±1σを 要求し、これにo-Ps生成確率20%×75%をかけ、3γ崩壊のバック グラウンドとする(赤いスペクトラム)

Simulation結果 rate

	Accidental BG	3γ decay BG	Pick-off BG	Signal	S/N
確率	3.2%	20%×75%	20%×75%× 3.5%	20%×75%× 0.6%	-
rate	7.4×10 ⁻³ Hz	4.5×10 ⁻² Hz	2.8×10 ⁻² Hz	4.8×10 ⁻³ Hz	6.0×10 ⁻²
10 ⁶ sec	7.4×10 ³	4.5×10 ⁴	2.8×10 ⁴	4.8×10 ³	-

S/Nは悪いが、 ジャイロトロンのduty比50%→ON/OFFが常に切り替わっている →ONとOFFの差をとることで シグナルが見える

サブミリ波ONとOFFの差 difference between ON and OFF ວ 2500 ອິງ 2001 Live time 10⁶sec程度 1ヶ月の測定で統計 的に有意にシグナル **/ 8keV** 1500 が見えることが期待さ れる Counts / 1000 500 0 350 450 500 550 400 600 energy deposit [keV]

Conclusion

- o-Psからp-Psへと遷移し、2γ崩壊した事象を検
 出するDetector配置を設計している
- Simulationで遷移を検出するrateを評価した
- LaBr₃シンチレータの高いエネルギー分解能に加え、Back-to-backを配置をとることで観測が出来ると期待できる
- ・実機製作,光量テストをこれから行う
- ・11月から第一回目測定を目指している

BACKUP

検出器(別サイドから)

アクシデンタル(4)

- Cavity内で停止しな いe⁺
- o-Psを形成せず prompt崩壊
- ・ Veto用プラスチックシ ンチレータを鳴らす
- Vetoをかけることが 出来るので、アクシ デンタルには寄与し ない

アクシデンタル(5)

- e⁺がCavity内へ向かう イベントが連続して起 きる
- 2つ目がo-Psを形成 せずprompt崩壊
- β-tag用プラスチックシンチレータが鳴った後
 200nsec以内に次イベントが鳴った場合イベントを捨てる

エレキで取り除くので
 アクシデンタルには寄
 与しない

Simulation (2) some plots プラスチックシンチレータ

Simulationで調べたこと

- ・観測には大きく分けて2つの方法
 - Back-to-back で2-γを確実にtag
 - Off-line analysisで511keV周囲をカット
 - アクシデンタルと3γのBGをどれだけ落とせるか?
- LaBr₃の高いエネルギー分解能が鍵

