

謝辞:この研究はKEKよりNal(TI)シンチレーターを貸していただき行ないました。 ありがとうございました。

<u>o-Psの不可視崩壊</u>

►o-Ps

- ►e⁺e⁻束縛系であるポジトロニウムのスピン3重項(3S₁)状態
- ►τ=142nsで3γに崩壊
- ➡このo-Psの不可視崩壊を探索する

➡標準模型では:

 $\mathbf{F} \Gamma(\text{o-Ps} \rightarrow \nu \ \overline{\nu}) \sim 6 \times 10^{-18} \Gamma_{3\nu}$

と非常に小さくて問題にならない

▶余剰次元への崩壊:

■標準理論の階層性問題解決のため、TeVスケールに余剰次元が考えられている。

▶余剰次元の数n=2の時

▶ミラーワールド、ミリチャージド粒子など

-

検出器の全体像

■Gant4を用いてシミュレーションを行い、線源から全方位に対し、back-to-backの単色 γ511keV2発が反応せずに通り抜ける割合が10-9以下になるように設計した。

■ファイバーを除く2本のPMTのコインシデンスを用いることにより、fakeを減らす

データ取得

► 2007年5月から約4ヶ月のデータ取得により5.9x10⁸ イベントのデータを取得

<u>イベントセレクション1</u>

►1275keV γを選ぶため1275keV±50keV でカット

- ►β+がタグ用シンチレーターの中心に当たって いれば二つのファイバーからの信号は近い値 になるはず
- ►大きくずれてるイベントは、ファイバー部分に 当たり、エアロゲルへ入っていない可能性 が大きいため落とす

<u>イベントサマリ</u>		
	イベント数	efficiency
セレクション前	5.9x10 ⁸	100%
trigger CsI カット	3.5x10 ⁸	59%
βタグカット	3.4x10 ⁸	58%
タイミングカット	3.2x10 ⁸	54%
宇宙線veto	2.6x10 ⁸	44%
ベースライン、	1.7x10 ⁷	2.9%
シンチレーター毎のカット		
	-オンラインでtrigger Csla トリガーをかけているが、 エネルギーによるwalkの 20ns以内であることを要	とプラシンのコインシデンス それぞれの時間を測定し 前正を加え、両者の反応 請

Totalのエネルギー分布(trigger CsI以外の全ての和) (ランダムトリガー) 宇宙線とベースラインに関するカットは通常の解析と 同じものを使用

■ source CsIでエネルギーを落とした タイミングを測ることにより、o-Psの 寿命を測定し、o-Psの生成率を求める ► Fitting 関数 $A \exp\left(-\frac{t}{\tau}\right) + B$ ■求められた寿命: $\tau = 126$ ns ➡これより、o-Ps生成率: $P_{0-P_{s}} = 14 \%$

N₂ガスを線源まわりに100cc/minの流 量でパージし、酸素によるpick-off(7 μ s⁻¹)を抑えているが、上記の寿命は、 1気圧のN₂中の寿命とコンシステント

p-Ps & e+e-対消滅

Decay time

結果

▶余剰次元のスケールへの制限:

n=2の時:k>0.32TeV

まとめ

- ►o-Psの不可視崩壊を用いて余剰次元を探索するため、高感度で検出する検出器を設計作成し、実験を行った。
- これまでの約4ヵ月の測定では不可視崩壊は見つからず、Br(o-Ps→invisible)<1.2x10⁻⁶のリミットを得た。また、余剰次元のスケールに対し、n=2の時、k>0.32TeVの制限を得た。
- データはまだ取り続けており、セレクションの最適化 もさらに進め、もう一桁近く改善をする予定である。

バックアップ

<u>オルソポジトロニウム(o-Ps)</u>

- 🖛 ポジトロニウム
 - ► e⁺e⁻束縛系
 - ➡ 単純な系
 - $\sim \sqrt{s}=2m_e=1022keV$
- **■** オルソポジトロニウム(o-Ps)
 - ► スピン3重項(³S₁)状態のポジトロニウム
 - ➡ C変換に対する変換性が奇
 - ► 3ү(5ү,7ү)にのみ崩壊
 - ► 長寿命:τ=142ns
- このオルソポジトロニウムの不可視崩壊を探す実験を行った
- ► 目標感度:10⁻⁷~10⁻⁸Γ_{3γ}
 - ➡ 1993年に東大が2.8x10-6のリミットを出した
 - ▶ 昨年、ETH Zurichが4.2x10⁻⁷まで更新

<u>o-Psの不可視崩壊2</u>

- ▶ ミラーワールドへの崩壊:
 - ▶ 重力以外では見えないセクターであるミラーワールドへの崩壊
 - ➡暗黒物質の候補のひとつ
 - ➡ 電荷を持つ"mixing particle"を介してフォトンとパラフォトンが結合

►P(o-Ps->o-Ps')=sin2ωt,
$$\omega$$
=2πε x 87GHz

■電子より軽い電荷εeの粒子fが存在した場合

$$\Gamma(\text{o-P} \to \text{ff}) = \frac{3\pi\varepsilon^2}{4\alpha(\pi^2 - 9)} \sqrt{1 - \left(\frac{m_{\text{f}}}{m_{\text{e}}}\right)} \left\{ 1 + \frac{3A - 1}{4} \left(\frac{m_{\text{f}}}{m_{\text{e}}}\right)^2 \right\} \Gamma_{3\gamma}$$

 case 1: γ線エスケープ(実際にはo-Psが ca 発生する割合は10%程度。p-Ps崩壊 あ
や対消滅によって生じる2γのエスケープ
が一番の問題)

case 2: γ線が検出器内部に ある物質で吸収されてしまう

以上、重要なのは以下の2点 <u>1. 高い検出効率を持つ4π検出器でγ線を逃がさない</u> <u>2. 内部のデッドマテリアルを極限まで減らす</u>

