o-Psを用いた CP 破れの探索 ープロトタイプ装置での実験結果ー

難波俊雄 西原一幸、山崎高幸、浅井祥仁、小林富雄 東大素セ、東大理

イントロ CP の破れ

- ・世の中、CPの破れは必須
 反物質はどこへ消えた?
- クォークセクター (Charm/Beauty) で見つけては みたものの、全然小さい
 - → 何か他にも CP の破れがあるはず
- せっかくなので、ポジトロニムでも探しましょう
 目標: 10⁻³ のレベル

(参考: Phys.Rev.Lett. 67(1991)1993 では 2%の 感度での探索→未発見)

ポジトロニウム崩壊における角度相 関

 o-Ps が三本のガンマ線に崩壊する際の角度 相関を利用 k_2 o-Ps $\left|\vec{k}_{1}\right| \geq \left|\vec{k}_{2}\right| \geq \left|\vec{k}_{3}\right|, \quad \hat{k} = \frac{k}{\left|\vec{k}\right|}$ <u>CP odd term!</u> $(\hat{s} \cdot \hat{k}_1)(\hat{s} \cdot \hat{k}_1 \times \hat{k}_2) \neq 0$ if *CP* violation o-Ps のスピンの向き、崩壊ガンマ線 (k1、k2)の方向とエネルギーを正確に求める

磁石とリターンヨーク

- ネオジム磁石 × 2 個
- •中心磁場 0.35T
- ・o-Psのスピン選択に利用

見たいのは、m_z=±1の成分

オルソ-パラミキシングによって、 不要な $m_z=0$ の成分を取り除く

²²Na 陽電子源 シリカエアロゲルの減速材 ベータ線タギングシステム

•線源強度1MBq

- 厚さ 0.1 mm のプラスチックシンチ
 レータによりベータ線をタグ
- ライトガイドを介して両側の PMT で コインシデンス

o-Ps creation & tagging system

- β^+ source: ²²Na (E_{end} =546keV), 1MBq
- β^+ stopper & e⁻ supplier: Silica aerogel (ρ =0.1)
- Tag for the β^+ emission: t=0.1mm plastic scintillator

ガンマ線検出器

- •4 個の (\$3cm×L3cm) LYSO シンチレータ
- ・ルテチウム: Z=71、ρ=7.1 →511keV のコンプトンの影響を減らす
- 150°の opening angle で放出された k₁、k₂ペアを検出
- ・3 組のペアで統計を稼ぐ

- •系統誤差を無くすために使用
- ・詳細は次のトーク

テスト実験のセットアップ

ただし、磁石の向きを変えて測定してみると、 10%程度の非対称性

- 最初の磁石の位置で一週間、磁石をひっくり返して一週間測定
- ターゲット領域の o-Ps イベントに 10% 程度の差

→CP 非対称性に直すと100% 超!

(もちろん、CP 対称性の破れではない。各検出器ペアで CP の破れの寄与の符号が異なるので、系統誤差とは明瞭に区別できる)

- - 磁石の向きを変える際の検出器の位置ズレ (100μm の違いが致命的な差を 生む)
 - o-Ps の生成レートの安定性 (磁石の位置を変更する際につけはずすので、どうしても生成レートが変わる)
 - →やっぱり回転台は必要ですね
 - 511keVの back-to-backの予期せぬコンタミ (アクリルのライトガイドをたたいた イベントが見える

→検出器の距離を離して見えなくする(検出効率の低下は2割程度で抑えられる)

まとめと本実験へ向けて

- ポジトロニウム崩壊における CP 非保存を 10⁻³ の感度
 で探す実験
- o-Ps のスピンと、崩壊ガンマ線の角度相関を利用
- 本実験とほぼ同様の測定系でテスト測定
 - 個別の検出器のデータは問題なし
 - 回転ステージ無いと安定性を出すのつらいよ
 - Bk-Bk 511keV BG → 入らない設計に
- ・ 回転ステージもできました (次トーク)
- とっととリターンヨークを作ってこの春に測定を開始します

ortho-para mixing under the magnetic field

- m_z =0 component of o-Ps mixes with p-Ps m_z =0 has shorter Lifetime
- $m_z = \pm 1$ component lifetime: no change

Observed spectrum with the tagging system

²²Na sourcePlastic scintillatorSilica aerogel

 Enough photoelectron collection for β⁺ peak (25keV ~ 11 p.e.)

 Timing resolution: σ~0.85ns
 (for all coincidenced events)

γ-ray detectors

- Requirements for the γ-ray detector:
 - Large stopping power for ~500keV γ 's
 - Good energy resolution
 - Good timing resolution

- LYSO (Lu_{1.8}Y_{0.2}SiO₅) scintillators are used for the detectors
 - Large Z, high density (Atomic number of Lutetium=71, ho=7.1)
 - ΔE =10% (FWHM) at 662keV
 - Short decay time 40ns
 - Δ T=150ps (σ) at 511keV

