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Positronium (Ps)

electron
\' Positron

g A—

 Psisthe bound state of e and e* (e* is the antiparticle of e)

— The lightest hydrogen-like atom
— Unstable, particle-antiparticle system

— Simple, good target to study bound state QED (Quantum
ElectroDynamics)



Positronium (o-Ps, p-Ps)

* Para-positronium (p-Ps)

S = () Spinsinglet
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511 keV (= electron mass) y rays
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Hyperfine Structure of the Ground
State of Positronium (Ps-HFS)

Experimental
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Theory
(Kniehl et al., 2000)

Mills et al., 1983

Ritter|et al., 1984

—eo—

203.385

203.387 203.389 203.391 203.393
HFS [GHZ]

Exp.

203.388 65(67) GHz (3.3 ppm)
O(a3) QED calc.

203.391 69(41) GHz (2.0 ppm)

203.395

Energy difference between o-Ps
and p-Ps, about 203 GHz.

A large (3.9 g, 15 ppm)
discrepancy between the
measured and the theoretical
value.

All of the previous measurements
are indirect measurements using
static magnetic field.

—>We plan to “directly” measure
Ps-HFS using high power sub-THz
(203 GHz) radiation.



Energy Level

A

First Direct Measurement of Ps-HFS with New
Sub-THz Technique
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Drive stimulated emission from o-Ps to p-Ps using 203 GHz radiation.

Since p-Ps decays into 2y promptly (125 ps), 2y annihilation increases
when Ps are exposed to 203 GHz radiation.

The natural transition rate is 101* times smaller than decay rate of o-Ps.
High power (> 10kW) sub-THz radiation is necessary.

Frequency has to be changed from 201 to 206 GHz in order to measure
transition curve. ’



Gyrotron Experimental Setup

FU CW Glr
Mode Converter
\ 22Na B* source & B* detector

‘ Ps are formed in gas
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Gyrotron “FU CW GI”

* Gaussian beam power ~ 350 W (5Hz, duty 30%)

* Replacing gyrotron cavities of different sizes to change frequency
without breaking vacuum of the MIG. Beam Profile
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Fabry-Pérot Resonator

N reflected g incident

Reflected and transmitted power
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e Sharpness/ =1.7um (Finesse = 430), and coupling C=62%
- Gain of the resonator is 85! (incident power ~ 350W)
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Ps Assembly and y-ray detectors

Signal = 2y decay of 0-Ps (monochromatic 511keV = back-to-back)

Plastic scintillator (t 0.1mm)

22Na e* source (1IMBq)
203GHz '
Gaussian Beam /

Au mesh mirror
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Photomultipliers

Cu concave mirror

Form Ps by stopping e* in gas
(neopentane 1 atm)

LaBr;(Ce) crystal scintillators 10



counts / ns/ sec

Ps-HFS transition@203.6GHz, 52kW

A measurement at a frequency point takes about 3 weeks (2 weeks for
preparation, 1 weeks for data acquisition)

When Ps are exposed to 203 GHz radiation, o-Ps—>3y (tail at the left of
511keV peak) decrease and o-Ps(—>p-Ps)—>2y (511keV peak) increase.
The 511keV peak during beam OFF is due to o-Ps+e—>2y+e™ (pick off
annihilation).

prompt peak
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Power & Frequency Dependence of

S/N [%]
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We have already measured transitions at 201.8 GHz, 203.6 GHz. The
data points are consistent with the theoretical curve.

We are going to measure at three more freuencies to estimate Ps-
HFS within this year.
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Summary

 We plan to directly measure Ps-HFS (203.4 GHz) for the first time
by developing new sub-THz technique.

* High power (>10 kW) and frequency tunability from 201 GHz to
206 GHz are necessary, so we use a demountable type gyrotron
“FU CW GI” and a high finesse Fabry-Perot resonator with a gold
mesh mirror.

* We have already measure transitions at two frequencies. In order
to masure Ps-HFS, we will perform three more measurements at
different frequencies within this year.



