Search for Hidden Photon Dark Matter in the Millimeter Wave Region with a Dish Antenna

Takayuki Yamazaki¹, Y. Okesaku², S. Knirck³, T. Inada¹, S. Asai², and T. Idehara⁴

¹International Center for Particle Physics, The University of Tokyo ²Departiment of Physics, Faculty of Science and Graduate School of Science, The University of Tokyo ³Institute for Theoretical Physics, University of Heidelberg ⁴Research Center for Development of Far-Infrared Region, University of Fukui

E-mail: yamazaki@icepp.s.u-tokyo.ac.jp

Dark Matter	Hidden Photon
Constituents of the Universe	• Extra U(1) gauge boson
Ordinary Matter	predicted by many extensions
~5%	of the Standard Medal

Candidates of DM

- WIMPs (Weakly Interacting Massive Particles)
- WISPs (Weakly Interacting Slim Particles)
 - ✓ Axion Like Particle
 - ✓ Hidden Photon (HP)

We are searching for hidden photon dark matter (HPDM) in the MMW region.

- The Milky Way Galaxy is filled with DM. Local DM density is $\rho_{DM} = 0.3 \text{ GeV/cm}^3$.
- From standard halo model, local DM velocity dispersion is v = 220 km/s ($\beta = v/c = 10^{-3}$).
- of the Standard Model
- Interact with an ordinary photon via kinetic mixing (c.f. neutrino oscillation)

"Dish Antenna Method" JCAP **04**, 016 (2013)

- A HP has a tiny electric field and causes free electrons in conducting material to oscillate. So, a HP is converted into an ordinary photon on a conducting surface.
- Snell's law : $v_{\gamma'} \sin \theta_{\gamma'} = c \sin \theta_{\gamma}$ $v_{\gamma'}/c = \beta_{\gamma'} = 10^{-3} \rightarrow \theta_{\gamma} \sim 0!$

Experimental Setup

Schottky barrier diode mixer (G-band)

Dark room at FIR-UF

Key Point

Large conversion plate

- → 600mm x 600mm Al plane mirror
- Good MMW detector
 - \checkmark Low noise
 - ✓ High detection efficiency (or low conversion Loss)
 - ✓ Wide bandwidth
 - → use Schottky barrier diode (140~220GHz) as a first step

Conversion Loss of SBD

- Need to measure the conversion loss of the SBD to estimate sensitivity to HP signals
- Use BWO (Backward Wave Oscillator) which can change frequency from 155GHz to 220GHz

- Solar Lifetime Cosmological Our experiment is Limits the first search for 10⁻⁹ HPDM in the xing **Ours (expected)** MMW region, and can evade a new parameter space. 10⁻¹⁰ 10^{-3} 10^{-2} 10-4 Hidden photon mass m [eV]
- The sensitivity is limited by the large conversion loss of the SBD, so we are planning to use low noise superconducting detector, such as SIS, in the future.