First test of $O(\alpha)$ correction on the energy spectrum in the orthopositronium decay

- Precise measurement on the energy spectrum of orthopositronium decay -

S. Adachi¹, T. Yamaji¹, A. Ishida¹, T. Namba², S. Asai¹, T. Kobayashi² ¹ Graduate School of Science, the University of Tokyo, Japan ² International Center for Elementary Particle Physics, the University of Tokyo, Japan 11th International Workshop on Positron and Positronium Chemistry Goa, INDIA

Introduction

Orthopositronium (o-Ps) decay

Expected energy spectrum from QED calculations 0.35 0.3 \checkmark o-Ps decays into 3γ ⇒ Continuous <u>spectrum</u> **Tree level** ✓ S. Adkins has ຼ່=0.25 + $O(\alpha)$ correction calculated this $O(\alpha)$ Spectr **Tree level*** 0.2 correction Belative 0.1 0.1 Phys. Rev. A 72 (2005) 032501 But, it is not examined by the experiment 0.05 * The red line is also superimposed. But, it is very difficult to distinguish 100 300 500 two spectra. Energy (keV)

 The O(α) corr. has been checked in the o-Ps decay rate (Y. Kataoka et al. Phy. Lett. B 671 (2009) 219-223)
 But, the spectrum has more detail information than o-Ps decay rate

since o-Ps decay rate has only the integral information of the spectrum

 \Rightarrow We want to check the O(α) corr. also in the energy spectrum

It is very difficult to test the $O(\alpha)$ correction. There are two reasons...

1. Material effect

 A measured spectrum is <u>much distorted</u> by the detector response and materials

like the solid lines

Compton scattering

has serious effect. It distorts the spectra especially in the low *k* energy region.

2. The O(α) corr. is too small

The ratio of the expected measured spectra ($O(\alpha)$ / tree level)

Energy region used to test the $O(\alpha)$ correction

Experimental setup

Experimental setup

To suppress material influences, we paid attention to two points

- ✓ Keep the whole setup 1m away from the floor and walls
- Reduce the materials as much as possible
 <u>Especially, the o-Ps source region has low material density</u>

Analysis

Time selection & Estimation of accidental contributions

Energy spectrum after time selection & estimation of accidental

Measurement in oxygen gas

We measured energy spectrum in <u>1atm oxygen</u> gas with the same setup

 Oxygen causes spin conversion into 2γ

 \Rightarrow This spectrum has much 2 γ decay

However,

 Pickoff has broader peak-width than spin conversion

We corrected the peak-width by using the measured values written in the following papers

- S.Orito, *et al,* PRL 63 (1989) 597-600
- S. Asai, et al, PRL 66 (1991) 1298-1301

PPC-11 GOA, INDIA

17

Pickoff subtraction

To subtract 2γ decay of pickoff annihilation,

Pure o-Ps spectrum

= Measured – Oxygen

Simulation

- Use GEANT4 Monte Carlo simulator popular in particle and nuclear physics
- \checkmark Simulate all the passages and reactions of γ -ray through matters
- ✓ Generate 2 spectra for $O(\alpha)$ and tree level QED calculations
- We measured <u>two mono-energetic γ sources</u> to estimate accuracy of this simulation

Energy (keV)

Energy (keV)

Method in χ^2 fit of pure o-Ps spectrum & simulation spectrum

Introduce a free parameter **F** in the simulation spectrum

Simulation spectrum =

 $F \times O(\alpha)$ simulation spectrum + (1-F)×Tree level simulation spectrum

Method in χ^2 fit of pure o-Ps spectrum & simulation spectrum

Introduce a free parameter **F** in the simulation spectrum

Simulation spectrum =

 $F \times O(\alpha)$ simulation spectrum + (1-F)×Tree level simulation spectrum

PPC-11 GOA, INDIA

- F is the mixing amount of O(α) & tree level
- F is fitted* to <u>pure o-Ps spectrum</u> with χ² method

F = 1 : **O**(α) **F** = 0 : Tree level

23

Fitting region is 400-530keV

 χ^2 / n = 16.2 / 23 F = 0.89 ± 0.61 (@68.3% C.L.)

F= 0 is excluded at <u>94.0%C.L.</u>

Data (measured spectrum) is consistent with the blue line and completely inconsistent with the red line

24

Summary

Summary

- ✓ We <u>first</u> observed the O(α) correction in the energy spectrum of o-Ps decay
- ✓ This result supports the O(α) correction and excludes tree level energy spectrum at 94% C.L.