SPring-8

Search for photon-photon scattering using the xFEL; Applications to the Particle Physics SACLA

S.Asai (U.Tokyo) on behalf of our collaboration

Contents of my talk

- 1. What is the Vacuum?
- 2. Non-linear effect of the Vacuum (QED)
- Search for the photon-photon scatter at SACLA; Experimental setup & new ideas
- 4. Results & Prospects
- 5. Search for the other fields (Axion, Dilaton)
- 6. Summary

Collaboration members are as follows;

T.Yamaji, T.Inada, T.Yamazaki, T.Namba, S.Asai, T.Tobayashi (U.Tokyo)

K.Tamasaku, K.Sawada, M.Yabashi, T.Ishikawa (Riken)

Y.Inubushi (JASR), Y.Tanaka(U. Hyogo),

T.Takahashi, S.Watanabe (JAXA), G.Sato (U.Waseda)

1. What is the vacuum?

The Higgs Boson is discovered in 2012 & wins Nobel Prize in 2013

Energy Energy is given to the vacuum by particle collisions at LHC Space • time Higgs field hidden in vacuum The energy excites the field. Energy Exited state = The Higgs Particle Space • time

Higgs Particle is **NOT important**, Higgs field hidden in our vacuum is important.

Discovery of the Higgs Boson shows that our vacuum is filled with the strange quantum field (Higgs filed)

2. Non-linear effect; our target is the vacuum

Photon does not couple to Photon itself. But virtual electron-positron pair exists in the vacuum. (QED vacuum)

Photon-photon scatter through the loop.

This is the direct evidence of Non-linear effect of the Vacuum; Called "Schwinger limit"

QED predicts

$$\frac{d\sigma}{d\Omega} = \frac{139\alpha^4}{(180\pi)^2 m^2} \left(\frac{\omega}{m}\right)^6 (3 + \cos^2\theta)^2$$

Suppressed by α^4 and highly suppressed by electron mass m.

the expected cross section σ =1.8×10⁻⁷⁰ [m²] for ω =eV Too small!! 10⁻²⁷fb 5

X-ray has advantages

- ↔ Cross-section has the strong dependence on ω; (ω/m_e)⁶ 6th power!! Enhanced by 24th order of magnitude for 10KeV X-ray to visible lights.
- ♦ Previous searches have been performed using visible/infrared light.

3. Search for the photon-photon scatter at SACLA

Just collide X-rays? Not so easy than thought.

> There are 3 challenges

- A) Photon Luminosity is crucial. (Ultimate all, number of photon, beam size, and pulse length)
- B) Collide photon to photon, control the optical path accurately in space and in time. (Not so easy)
- C) Understand background events and reject them drastically. Signal is very very small. On the other hand, BG is huge.

A) How to gain Photon Intensity; Upstream

- 1.2×10¹¹photons/pulse@11keV, Pulse frequency is 30Hz.
- ♦ Monochromatic spectrum (bandwidth 80eV ->63meV) is obtained using the channel cut in which Si (4,4,0) Lattice is used. E=10.985keV

↔ Using the KB mirrors, beam is squeezed into **1 µm** (Horizontal) → High Luminosity

B') How to collide X-rays

Beam splits into two using the blades, and collide here. Optical path (both in space and time) is guaranteed,

C) Background suppression (Energy information)

Dominant background is the stray photon of the incident light. (E~11KeV) Not Head-on collision(the collision angle is 72 degree), then the CM system is boosted forward. The energy of signal photon becomes 18-20 keV.

C') Background suppression (Position information)

Since all photons are concentrated in a short pulse, 10fsec, Pile-up of two photons becomes the backgrounds, since the sum energy (22keV) of two pile-up photons are close to the signal (18-20KeV).

Position information is also used. To separate pile-up event

Double-Sided Silicon Strip Detector

(DSSD) is used.

- sensor 32mm×32mm×t0.5mm
- ➤ 128 Strip * double sided (250µm Pitch)
- Very Low Noise for a single counting
- ➢ Good energy resolution (FWHM) :

1.1keV@22keV

- Detection efficiency is 40% @ 20keV
- This is developed for the ASTRO-H satellite. X-ray astronomy.

Photograph of DSSD

C") Estimation of Background rejection Power

SPring8 is the strong X-ray source (3*10¹³ photons/sec, 10times higher but almost DC beam). This show the deposited positions measured at SPring8 with the same detector configuration. Background single photon deposits widely and almost flat.

Experimental Setup

Setup in SACLA EH4

4. Results

July in 2013 (Run time 9 hours)+November in 2014 (29hours)

Luminosity

There are 3 parts in Luminosity

 $I_{1}I_{2}$ $I_{-}=$ $4\pi\ell_{\nu}\ell_{h}\sqrt{(1+(\ell_{t}/\ell_{\nu})^{2}\tan^{2}\frac{\vartheta}{2})}$ Beam size is measured by wire-scan θ =108 deg. lv=195μm、lh=0.8μm Flat shape! horizontal is squeezed by the KB θ mirror. Vertical can not be squeezed since

we use the interferometer.

Beam length 10fs=3µm (Not head on collision)

> We can ignore since It is small

 $_{-0.24} \times 10^{26} \,\mathrm{m}^{-2}$ Int. Luminosity $L=2.25^{+0.23}$

Photon intensities in each beam are monitored by PIN I ~2.8×10⁵ γ/pulse

Initial intensity $10^{11} \gamma$ / pulse Why???

Beam is made monochromatic (80eV->63meV) ~ 10⁻⁴

through two Laue diffraction 0.1*0.1~ 0.02

No signal was observed

Upper-limit on the cross-section(95%CL)

4B. Prospect (Near Future)

Self-Seeding xFEL +Bragg Ref. + Squeezing

- ♦ Self-Seeding of xFEL will gains 10⁴ on L
 ♦ Bragg Type interferometer instead of Laue gains 10⁴
- ♦ Squeezing into
 50-100nm
 gains 10⁴

TOTAL ~10¹²

Self Seeding xFEL +Bragg Ref. + Squeezing

4C. Prospect (Long scale)

Four-wave mixing has already been observed in materials and laser. In Bernard 2000, Four-wave mixing was used to enhance sensitivity, but using infrared lights.

Using the splitters and super-mirrors, X-ray splits into 3 and change their path.

4C. Prospect (Long scale)

Four-wave mixing has already been observed in materials and laser. In Bernard 2000, Four-wave mixing was used to enhance sensitivity, but using infrared lights.

Four-wave mixing

We can discover "Schwinger limit": if these technologies are ready

These new particles are detected as follows

$$P_{\gamma \to a} = \left(\frac{g_{a\gamma\gamma}B \cdot L}{2}\right)^2 \cong \frac{1}{4} \left(\frac{g_{a\gamma\gamma}}{1 \,\text{GeV}^{-1}}\right)^2 \cdot \left(\frac{B}{1 \,[\text{T}]}\right)^2 \cdot \left(\frac{L}{1 \,[\text{m}]}\right)^2$$

 χ : mixing parameter

These new particles are detected as follows

 χ : mixing parameter

Summary

- After Higgs Boson discovery, "Vacuum" becomes one of the frontier field.
- Many fields are hidden in vacuum. Photon is key technology to probe the vacuum.
- Using XFEL SACLA, we search for the non linear effect of the vacuum (Schwinger Limit) Sensitivity still not enough,
 Set upper-limit on σ(γγ) < 3* 10-²⁵ m²
- Near futures, sensitivity will be improved by 10¹⁰-10¹², Searches for the other unknown fields (inspired by Dark matter, dark energy) are also in progress. 4WM gains, and we can reach Schwinger limit.

xFEL is useful , not only for applied science but also for the fundamental Physics.

- The other programs become possible after
 * 10 asec, 1nm pulse ready.
 - * Self-seeding is also important.
- * Optical equipment (Fabry Perot resonator, mirror,,)

energy) are also in progress. 4WM gains, and we can reach Schwinger limit.