SPring-8

Probe into vacuum field using High-intensity X-ray Applications to the Particle Physics

SACLA

S.Asai (U.Tokyo) on behalf of our collaboration

Contents of my talk

- 1. What is the Vacuum?
- 2. Non-linear effect of the Vacuum (QED)
- 3. [A]Search for the photon-photon scatter at SACLA
- 4. [B] Using collision of X-ray and Laser at SACLA
- 5. [C]Using collision of X-ray and strong Magnet at Spring8 (Axion, Dilaton)
- Summary

Collaboration members are as follows;
Particle Phys, T.Yamaji, Y.Seino, T.Inada, T.Yamazaki, T.Namba, **S.Asai** (U.Tokyo)
SACLA-Spring8 Group: K.Tamasaku, K.Sawada, M.Yabashi, T. Yabuuchi, T. Togashi,
Y.Inubushi, **T.Ishikawa** (Riken, JASR), Y.Tanaka(U. Hyogo),

1. What is the vacuum?

The Higgs Boson is discovered in 2012 at LHC

Higgs particle is **NOT important**,
Existence of the Higgs particle shows that **our vacuum is filled with the strange quantum field** (Higgs filed)
Higgs field is hidden in our vacuum.
It is important notice.

Vacuum and Space-time become targets of Particles Physics

Particle is not a target now.

Universe

(birth and

evolution)

Dark energy

Space-time structure and vacuum structure are studied using particles.

Quantum level.

First step to

unify GR + QM

GW

Space-Time

SUSY is the next main target of LHC, since it bridges between

Supersymmetry

Unify the Gravity and

Particle physics

Extra dimension

Particle

LHC is Energy frontier Photon is intensity and Precision Frontier

Higgs (Origin of mass)

Spontaneous symmetry braking →origin of variety

Various fields are hidden in our vacuum

Wide range of Light Sources are developed/used

KeV(X Ray) meV(THz) eV (Laser)

Gyrotron + FP resonator E>20kW 10²⁶ Photon

F=450,000 FP resonator

10T strong Magnet

Hidra-100(2.5TW)

SACLA - Spring8

Various combinations of these light sources cover various CME for survey

2. Non-linear effect of the vacuum

This is BG for hunting of a new field(Axion, DE..) but It is also a very interesting target. Nobody see it

In Maxwell eq, photon Nobody see it does not couple to photon itself.
But virtual electron-positron pair exists in our vacuum. (This is the QED vacuum)

Photon-photon scatter through this loop.

Photon-Photon collision is the direct evidence of the QED field hidden in the Vacuum;

QED predicts

$$\frac{d\sigma}{d\Omega} = \frac{139\alpha^4}{(180\pi)^2 m^2} \left(\frac{\omega}{m}\right)^6 (3 + \cos^2\theta)^2$$

This process is seriously suppressed by α^4 and highly suppressed by electron mass m.

The expected cross section $\sigma=1.8\times10^{-70}$ [m²] for $\omega=eV$ Too small!!

X-ray has advantages to probe the QED vacuum

- \Leftrightarrow Cross-section has the strong dependence on ω; $(ω/m_e)^6$ 6th power!! Enhanced by 24th order of magnitude for 10KeV X-ray comparing to visible lights.
- ♦ Previous searches have been performed using visible/infrared light.

Many filed may be hidden in the vacuum. Let's use different ω, and

Explore a new regions.

- (1) Squeeze upto \sim O(1) nm
- (2) Go straight
- (3) Easy a single photon counting.
- ((1)-> intensity
- (2)(3) -> to control backgrounds)

3. [A] Search for the photon-photon scatter at SACLA

We performed to search for photon-photon collision at SACLA(XFEL).

Just collide? Not so easy!!

3 challenges

- A) Photon Luminosity is crucial.
- B) To collide photon to photon, control the optical path accurately in space and in timing.
- C) Understand background events and reject them drastically. Signal is very very small. On the other hand, BG is huge.

A) How to gain Photon Intensity; Upstream

- 4×10^{11} photons/pulse@11keV, Pulse frequency is 30-60Hz.
- \Rightarrow Beam width is 200μm × 200μm (FWHM), and a pulse length is short as 10fs(=3μm)
- ♦ Monochromatic spectrum (bandwidth 80eV ->63meV) is obtained using the channel cut in which Si (4,4,0) Lattice is used.

 E=10.985keV
- Using the KB mirrors, beam is squeezed into 1 μm (Horizontal)
 - → High Intensity is obtained.

B) How to Split and Collide X-rays

Laue diffraction is used;

Si (4,4,0) Crystal Lattice is used. θ_B =36° for 10.985keV incident X-ray Injected X-ray is split into Laue-Type interferometer is used; 3 blades (t=200µm) are cut from a single crystal of Silicon.

transmit and diffractive. Both efficiencies are about 10%

B') How to collide X-rays

Beam splits into two using the blades, and collide here. Optical path (both in space and time) is guaranteed,

C) Background suppression (Energy information)

Dominant background is the stray photon of the incident light. (E~11KeV) Collision is not Head-on (the collision angle is 72 degree), then the CM system is boosted forward. The energy of signal photon becomes 18-20 keV.

Result

◆Potential source of pseudo signals
1)pileups of two stray X rays
: ~0.01 pileups are expected
2)accidental coincident of environmental X rays
:0.43 ± 0.03 BGs are expected

X-ray timing (0: SACLA X-ray pulse)[µs]

No signal was observed

Upper-limit on the cross-section(95%CL)

Why so becomes worse? E Width of "Laue scatter" is too narrow $80eV -> 63meV \ 1/1000 * 2\% (2 Laue scatter) -> <math>10^{-5}$ photon loss / each

Next Step: Soft mirroring? SACLA+SPring-8 head-on collision

If Laue/Bragg scatter is used, very narrow Energy width is necessary(63meV). Can we use more loose mirroring valid for the wide width (like mosaic crystal or multi-Layer Bragg)? New idea / New Optics are necessary to use all photons(10¹²) from the XFEL.

SACLA+SPring-8 co-operation

In EH5: SACLA and SPring-8 will be synchronized in near future.

From Spring8 ~10³ photon/pulse 40ps (pulse intensity is 10-9 weaker than SACLA)

All photons from SACLA/Spring8 can be used.

- 50nm focusing can be used in head-on collision
- \rightarrow sensitivity 10¹¹ is enhanced.

Then we can reach the QED vacuum or discover a new unknown field(Axion, Dilaton).

4. [B] Using collision between X-ray and Laser at SACLA

Material scientist View: pump-probe spectroscopy, target is "vacuum"

Light Sources to Pump and Probe

Probe

Performance of the SACLA

• Photon number : 6×10¹¹ photons/pulse @ 10 keV

• Pulse width : <10 fs

• Beam size after focusing -> 1 μ m

Pump

A high power laser is synchronized with SACLA a **500 TW laser** is under installation.

Performance of the 500 TW laser

• Wave length : 800 nm

• Pulse energy : 12.5 J

• Pulse width : 25 fs

• Rate : 1 Hz

beam size can be squeezed upto 1μm

2.5 TW laser (Hidra-100) is used now for test experiment.

500 TW laser

A) Polarizer is key technology for birefringence exp.

 $\Delta n \sim 10^{-11}$ for I=10 ²² W/cm² High Extinction ratio ~10⁻¹¹ is necessary

Ki: input vector, q is transfer by Bragg. Usual path MBR: at least twice scatter, a lattice structure is examined, -> Choice no q' lattice

B) Diffraction experiment case

Estimated disribution

Incident X-ray

Angle distribution of Diffracted light is given by

$$rac{\mathrm{d}N_{\mathrm{diffracted}}}{\mathrm{d}\cos heta}\simrac{JE^2W^2}{w_{\mathrm{L}}^2(w_{\mathrm{L}}^2+2w_{\mathrm{X}}^2)} imes(Ew)^2e^{-rac{1}{2}(Ew heta)^2}$$
 0.8

$$w^2 = rac{w_{
m L}^2 w_{
m X}^2}{w_{
m L}^2 + 2 w_{
m X}^2}$$

PRD 94, 013004 (2016)

Probe X-ray laser (Gaussian beam)

Photon flux: J

Photon energy: E

Beam waist :ω_χ

High Energy E
Squeezed both
High Flux J
High Power W

Pump laser

Pulse energy: W

Beam waist : W

Pump laser

Probe X-ray is diffracted ~ 30μrad (Very small angle)

Probe laser

B') The first research has been performed at SACLA (2016)

2.5 TW laser light is sqeezed upto 10 μm with Off-Axis-Parabolic mirror with hole. (beam size of both are estimated with CCD and wire-scan -> 10 μm)

3 big Challenges !!!

- 1) **Timing:** Laser is synchronized with SACLA (within a few ps)
- 2) In Space: Collision point is exactly controlled (within beam size)
- 3) Background suppression (Suppression factor 10⁻¹⁶)

Photon Detector is used. Scatter is

The first research has been performed with 2.5TW laser + SACLA Focusing size ~ 10µm

Log (Center of Mass Energy of gamma gamma system)

5. [C] Using collision of X-ray and Strong Magnet at Spring-8 (Axion/Dilaton like particle)

10T Magnets are used (4 units)

L.Ne is used to cool magnet down 100L/h is exhosted.

3mF Condenser bank 30KJ (1HZ rep.)

Sensitivity is for 0.1 eV

Summary

- After Higgs Boson discovery, "Vacuum" becomes one of the frontier field.
- Many fields are hidden in vacuum. Photon is key technology to probe the vacuum.
- ➤ Using XFEL SACLA/Spring-8, three different energy regions the Universe (10KeV, 100eV, 0.1eV) are explored with the different technologies.
- New developments on X-ray optics / XFEL open new possibilities
- You can find out more details of experiments and the other activities of our group

http://tabletop.icepp.s.u-tokyo.ac.jp/Tabletop_experiments/English_Home.html

