Search for a monochromatic component of solar axions using Fe-57

Toshio Namba ICEPP, University of Tokyo

Axion

- Undiscovered pseudoscalar particle predicted to solve the ``strong CP'' problem
- m_a ??, g_a ?? no prediction,

but $m_a \propto g_a$

• One candidate of cold dark matter,

if $m_a = 10^{-3} \sim 10^{-6} \text{ eV} \Rightarrow \text{Cavity experiments}$

 If m_a (g_a) is reasonably large, it is unlikely as CDM, but

 \Rightarrow the sun can be a bright axion source

Solar axion

(off-topic) Search with $g_{a\gamma\gamma}$ Tokyo axion helioscope

- *BL*=4T×2m
- Improvements will be done in ~one year to explore m_a~ eV region

Monochromatic solar axion and its detection

- Like Mössbauer effect
- No need to move detector (~5eV width due to thermal motion)
- Not affected by the theoretical uncertainty of g_{avv}

Target region and other experimental constraints based on g_{aNN}

- Not so many experimental constraints
 - From J/ψ decay: m_a<~6 keV
 - Similar solar ⁵⁷Fe axion search: m_a<745 eV (M. Krčmar *et al.*, PLB 442(1998)38)
 - SN1987A??? What is it?

Even if so, the hadronic axion window still exists arond $m_{\rm a} \sim$ a few tens eV!!

- If *m*_a~100 eV,
 - ⁵⁷Fe axion flux on the earth: ϕ ~10¹² cm⁻² s⁻¹
 - ⁵⁷Fe excitation rate: *R*~10² day⁻¹ g⁻¹

Detector setup I

- ⁵⁷Fe foil and large area Si PIN photodiodes
- Cooled with dry ice (195 K)

Detector setup II

- 2 × Si PIN photodiodes:
 - Hamamatsu S3584-06
 - Active area: 28mm×28mm
 - Thickness: 500µm
 - Specially packaged with low-BG ceramic
 - ⁵⁷Fe foil
 - Enriched: 95.85%

(natural abundance: 2.2%)

- 32mm × 32mm
- Thickness: (40±5)µm
 (att. length=20µm @14.4keV)
- Mass: 320mg

Detector performance

- Absorption in iron
- Acceptance
- Incident angle
- ⇒Estimated by Geant4 based MC

>14.8%

for 14.4keV from the foil

Measurement

- From July 26th, 2005 to September 3rd, 2005
 - Two types of foils were attached

- Background subtraction corresponds to signals from 93.6% ⁵⁷Fe
- During all measurements,
 - Same apparatus were used except for the foil
 - Stable operation
 - Temperature of Holder (198±1) K
 - Temperature of 1st stage FET (212±1) K
 - Gain fluctuation < ±0.3% (Checked by 59.5keV from ²⁴¹Am)

Obtained spectrum

Results

 From the obtained 95% limit: < 7.93×10⁻⁵ cps ±2σ region: 95.45%
 ⁵⁷Fe mass difference: 197mg Detection efficiency: 14.8% Branch of γ-ray emission: 10.5%
 ⇒ Excitation rate of ⁵⁷Fe: R < 2.35×10³ /day/g (95% C.L.)

(Factor 144 improvement)

- This corresponds to:
 - *f_a* > 2.89×10⁴ GeV, *m_a*< 216 eV (if *z*=0.56, S=0.5) (Factor 3.5 improvement)

Future prospects

Towards the hadronic axion window

$$(m_a \sim a \text{ few tens eV})$$

- Development of <u>a new detector made of iron</u> is necessary
- If iron detector is possible,
 - \Rightarrow 2 order improvements of S/N, even if the same BG level
- One candidate:

New generation semiconductor: β -FeSi₂ (iron silicide)

 Possibility for the application as a particle detector is under investigating (e.g. growth of bulk)

诱明窓

無反射膜 n-Si

n-β-FeSi2 p-β-FeSi2

センサ

Summary

- A new search for solar axion was performed
- This search is based on $g_{\rm aNN}$
- ⁵⁷Fe foil and silicon PIN photodiodes were used
- From the absence of ⁵⁷Fe related signals, a new experimental constraint was obtained
 m_a < 216 eV, f_a > 2.89×10⁴ GeV
 (z=0.56, S=0.5)