Detection of the Direct Hyperfine Transition of Positronium Atoms using sub-THz High-power Radiation

Taikan Suehara (ICEPP, The University of Tokyo), contact: suehara@icepp.s.u-tokyo.ac.jp A. Miyazaki, T. Yamazaki, G. Akimoto, A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito (Tokyo), M. Yoshida (KEK), T. Idehara, I. Ogawa, Y. Urushizaki (Fukui) and S. Sabchevski (BAS, Bulgaria)

The HFS Problem in Positronium

Positronium HFS is an ideal target for precise measurements probing new physics.

Frequency measurement: very precise measurement possible Pure QED system: very precise theoretical calculation possible Current best numbers:

Requirements for Measuring the HFS

204 205

Radiation frequency [GHz]

200 201 202 203

Optical Design

Convert gyrotron output (TE03) into quasi-Gaussian mode:

Optimization of the Cavity

Two parameters to maximize power density: **1. Finesse** describes **resonance power (multiplicity)** of the cavity

 $= \frac{\delta\nu}{\Gamma} \sim \frac{2\pi}{1-\rho}$

 δv : spectral width ($\lambda/2$ for our cavity) Г: FWHM of resonance (measurable) ρ: round-trip reflection Target: $\mathcal{F} > 628$ (> 99% reflection) High-reflection mirrors

Source & Detectors

Positronium formation

- $\geq {}^{22}Na \beta^{+}$ source emits positrons
- (545 keV max, ~1 MHz)
- Positrons scatterd with gas (isobutan) and decelerated to several eV
- Some of the decelerated positrons

- (Mesh: >99.2%, Cu: >99.8%) Mesh parameters are optimized by EM field simulation Suppress diffraction loss by the concave mirror (beam size: < 15mm)
- Finesse can be measured by monitoring resonance width Γ : it shows *F* > 630 is already obtained.

2. Coupling determines fraction of power introduced to the cavity Target: > 50% coupling (< 50% input loss)

- Transverse mode matching between input and inner field Quasi-TEM00 (Gaussian) mode converter
 - Fine tuning of input beam (beam size,

Au mesh plate Cu mirror (20 μ m width, 50 μ m spacing,1 μ m thick) (R=300mm)

Power output at the resonance scanned by the piezo stage

dispersion angle and beam position) at the mesh

wo/Gaussian converter w/converter beam profile at the mesh

Low reflection/absorption loss before the cavity low-loss, low-reflection material of the lens and mesh substrate High transmission at the mesh optimizing mesh parameters

Coupling can be measured by monitoring output and reflection power: final optimization is now ongoing.

take an electron from gas at the cavity and form positronium (Ps) > 1/4 of the Ps are **p-Ps**, decaying **immediately** to **2**_Y (just 511 keV), other 3/4 are **o-Ps**, decaying to 3γ (< 511 keV) with 140 ns lifetime **HFS transition & detection** Emission time of positron is recorded by the β -tag scintillator HFS transition occurs on the o-Ps, which creates **p-Ps** in o-Ps lifetime Emitted photons are captured by LaBr₃ scintillators, which record energy and timing of the photons Counting **delayed 2**_Y (511 keV) events, which indicate HFS transition

Summary and Plan

- **A new direct method of Ps-HFS** measurement is under development.
- **A 203 GHz high power gyrotron with** a Fabry-Pérot cavity is utilized to obtain high photon density.
- \checkmark After the final optimization of the coupling, the first observation of direct HFS transition is aimed at this summer, leading to precise HFS measurements.