Sub-THz Spectroscopy of the Ground State Hyperfine Splitting of Positronium

T. Yamazaki¹, A. Miyazaki¹, T. Suehara¹, T. Namba¹, S. Asai¹, T. Kobayashi¹, H. Saito², Y. Tatematsu³, I. Ogawa³, T. Idehara³

¹Graduate School of Science, and ICEPP, University of Tokyo ²Graduate School of Arts and Sciences, University of Tokyo ³Research Center for Development of Far-Infrared Region, University of Fukui

Positronium (Ps)

- Ps is the bound state of e⁻ and e⁺ (e⁺ is the antiparticle of e⁻)
 - The lightest hydrogen-like atom
 - Unstable, particle-antiparticle system
 - Simple, good target to study bound state QED (<u>Q</u>uantum <u>E</u>lectro<u>D</u>ynamics)

Positronium (o-Ps, p-Ps)

- *Para*-positronium (*p*-Ps)
 - $S=0\;$ Spin singlet

Short lifetime (0.125 nsec) p-Ps $\rightarrow 2\gamma$ (, 4γ , ...) 511 keV (= electron mass) γ rays

• Ortho-positronium (o-Ps)

p-Ps

 k_1

 $-k_{1}$

Hyperfine Structure of the Ground State of Positronium (Ps-HFS)

Exp.

203.388 65(67) GHz (3.3 ppm) O(α³) QED calc. 203.391 69(41) GHz (2.0 ppm)

- Energy difference between o-Ps and p-Ps, about 203 GHz.
- A large (3.9 σ, 15 ppm) discrepancy between the measured and the theoretical value.
- All of the previous measurements are indirect measurements using static magnetic field.

→We plan to "directly" measure
Ps-HFS using high power sub-THz
(203 GHz) radiation.

First Direct Measurement of Ps-HFS with New Sub-THz Technique

- Drive stimulated emission from *o*-Ps to *p*-Ps using 203 GHz radiation.
- Since *p*-Ps decays into 2γ promptly (125 ps), 2γ annihilation increases when Ps are exposed to 203 GHz radiation.
- The natural transition rate is 10¹⁴ times smaller than decay rate of *o*-Ps. High power (> 10kW) sub-THz radiation is necessary.
- Frequency has to be changed from 201 to 206 GHz in order to measure transition curve.

Experimental Setup

Gyrotron "FU CW GI"

- Gaussian beam power = 300 W (5Hz, duty 30%)
- Replacing gyrotron cavities of different sizes to change frequency without breaking vacuum of the MIG.

Feedback Stabilization

Fabry-Pérot Resonator

- The mesh parameters were carefully optimized using CST MWS
 Frequency domain analysis, periodic boundary condition
- From 201 to 205 GHz, Finesse > 400, and Coupling > 60%.

Fabry-Pérot Resonator

- Sharpness $\Gamma = 1.7 \mu m$ (Finesse = 430), and coupling C = 62%
 - \rightarrow Gain of the resonator is 85! (incident power ~ 300W)

Power Estimation

• We estimate accumulated power from transmitted power. Calibration constant from voltage of the pyroelectric detector to accumulated power is obtained as follows.

- A half of the beam is totally absorbed by water and its total power P_{in}[W] is estimated from its temperature increase.
- The other half of the beam is exposed to the Cu concave mirror and the transmitted power through φ0.6 hole V_{tr}[V] is measured with a pyroelectric detector.

From this measurement, <u>the calibration constant for the Gaussian</u> <u>beam is obtained ($P_{in}[W]/V_{tr}[V]$)</u>, but the beam shape is different from that in the Fabry-Pérot resonator.

Power Estimation

 In order to correct the difference, the beam shapes of the Gaussian beam at Cu mirror position is measured with PVC sheet. (P_{hole}/P_{in} is measured.)

- The beam shape in the Fabry-Pérot resonator can be calculated. As a result, the calibration constant from V_{tr}[V] to P_{acc}[W] can be obtained.
- These measurements are performed every time we change gyrotron output frequency, and we monitor calibration constant during transition measurements.

with PVC sheet

Ps Assembly and γ -ray detectors

²²Na e⁺ source and e⁺ detector

• Optical photons are emitted when e⁺ passes through a plastic scintillator, and they are measured with photomultipliers (PMTs).

γ-ray detectors & Fabry-Pérot resonator

 Four γ-ray detectors are placed as near to high power radiation as possible in order to detect γ rays efficiently.

Ps-HFS transition@202.9GHz, 15kW

- A measurement at a frequency point takes about 3 weeks (2 weeks for preparation, 1 weeks for data acquisition)
- When Ps are exposed to 203 GHz radiation, $o-Ps \rightarrow 3\gamma$ (tail at the left of 511keV peak) decrease and o-Ps($\rightarrow p$ -Ps) $\rightarrow 2\gamma$ (511keV peak) increase. The 511keV peak during beam OFF is due to o-Ps+e⁻ \rightarrow 2 γ +e⁻ (pick off annihilation). prompt peak

Current Status (Preliminary)

- We have already measured transitions at 201.8 GHz, 202.9 GHz, and 205.3 GHz. The data points are consistent with the theoretical curve.
- We are going to measure at a few more points and obtain a transition curve. Then, we will be able to estimate Ps-HFS from its peak position.

Summary

- We plan to directly measure Ps-HFS (203.4 GHz) for the first time by developing new sub-THz technique.
- In order to measure transition curve of Ps-HFS, high power (>10 kW) and frequency tunability from 201 GHz to 206 GHz are necessary.
- Gyrotron "FU CW GI" is a demountable type gytoron and able to output all necessary frequency points by changing cavities with different sizes.
- A Fabry-Pérot resonator with a gold mesh mirror on high resistivity Si is able to accumulate 20 kW power without any damage on the gold mesh.
- We have already measured transitions at 201.8GHz, 202.9GHz and 205.3GHz. We are going to measure at a few more points in order to obtain a transition curve and estimate Ps-HFS from its peak position.