オルソポジトロニウムの稀崩壊を用いた余剰次元の探索

是木玄太

難波俊雄、兼田充、 浅井祥仁、小林富雄 東京大学素粒子物理国際研究センター

日本物理学会2007年春季大会 首都大学東京 南大沢キャンパス 2007/03/25

1

$1 \text{ o-Ps} \rightarrow \text{Extra Dimensions} (1)$

余剰次元について

自然界に大きく離れた2つのエネルギースケール(電弱相互作用破れのスケールとプランクスケール)が存在するのは不自然である。これは階層性問題と呼ばれ、標準模型の致命的な問題である。

o-Psからの崩壊について

o-Psは87GHzで質量2m。の仮想光子と量子的な振動を繰り返している

$o-Ps \rightarrow Extra Dimensions(2)$

o-Ps→余剰次元への崩壊分岐比

For n=2 (n=1 は既に否定)

$$\Gamma(\text{o-Ps} \to \gamma^* \to \text{add dim}) \approx 3.0 \times 10^4 \left(\frac{m_{\text{o-Ps}}}{k}\right)^2 \Gamma_{3\gamma}$$

$$\approx 3.0 \times 10^{-8} \left(\frac{1\text{TeV}}{k}\right)^2 \Gamma_{3\gamma}$$
余剰次元の

→ TeV領域の余剰次元は、10-8程度の感度の探索で見付けることが出来る

これは前回の制限より2桁程度 高い感度である (cf. 前回(1993)のリミット: 2.8×10⁻⁶) 3

検出原理

²²Na からの e⁺ 崩壊のタグ → o-Ps生成 → o-Ps崩壊 の流れを図を用いて説明する

²²Na からの e⁺ 崩壊のタグ → o-Ps生成 → o-Ps崩壊 の流れを図を用いて説明する

7

²²Na からの e⁺ 崩壊のタグ → o-Ps生成 → o-Ps崩壊 の流れを図を用いて説明する

case 1) γ線が検出器内部に ある物質で吸収されてしまう case 2: γ線エスケープ (特に、p-Ps崩壊や対消滅によって 生じる2γのエスケープ)

以上、重要なのは以下の2点 <u>1. 内部のデッドマテリアルを極限まで減らす</u> <u>2. 高い検出効率を持つ4π検出器でγ線を逃がさない</u>¹⁰

線源から全方位に対し、back-to-backの単色 γ 511keV2発 が反応せずに通り抜ける 割合が10-9以下になるように設計した。前回話したので今回はスキップする。

red: Nal x 62 light blue, blue: Csl x 30

データ取得

- 今回の解析は、2006年12月22日から6日間
 分のe⁺トリガーデータを用いて行う。
- ・<u>収集したe+トリガーデータ</u> 2.8×10⁸
- 上記のデータから、²²Naの正しいe⁺崩壊を選 別する3つのイベントセレクション と 綺麗な 事象を選別する2つのイベントセレクションを 掛けてイベントを選別する

簡略化した回路図

取得するデータは、エネルギー情報、タイミング情報、プレエネルギー情報の3つ

5つのイベントセレクション(1,2)

- e+がPlaを鳴らすとPMT-A,PMT-Bで ほぼ同等の光量が得られる
- 2PMTの光量がバランスした事象を選ぶ

•x[ch]-100 < y[ch] < x[ch]+100

2. 1275keVγ選別

FWHM 9.2% 1 σ **50keV**

• 1シグマの領域を用いる 16

5つのイベントセレクション(3)

3. e⁺崩壊イベント 選別

e⁺と1275keVが同じタイミングで来て いる事を要求する

- 25mV(85keV)の閾値でストップ信号 を作る
- ジッターを抑える為に50nsで積分
- 信号の立下り時間は、約200ns

triggerCsl 1275±50keV 要求時の タイムスペクトル

Time Walk補正 後の1σ 5ns

 2シグマの領域を 用いる
17

5つのイベントセレクション(4,5)

4. CR veto選別

CRVeto	宇宙線エネルギー閾値	veto 時間	頻度
CsISUM	$11.5 \mathrm{MeV}$	1ms	24Hz
NaISUM	5MeV	2ms	70Hz

2% 14%

に対して

全イベント

CsISUM,NaISUM の宇宙線 Veto

宇宙線がやってくると、PMTが電流を引きすぎて不感時間が生じてしまう。

2ms

5. プレエネルギー(Eadv)による選別 CsISUM,NaISUM,triggerCsI,sourceCsIの計4 つのベースラインを監視している

パイルアップ事象を排除する為、また正しいエネルギー情報を取得す 18 る為にベースラインカットを掛ける

Event Selection Name データがリダクションされていく様子

e⁺光量比	90.3%			
triggerCsI	約	3.0%		線源からtriggerCsl を睨む立体角が小さ
(1275keV)	1/30			いので、効率が小さ
e⁺とtriggerCsIのタ イミング		2.7%		
CR Veto		2.3%	約	
Eadv Veto		0.78%	ー 1/3 に	

ここまでのセレクトで得られた綺麗なe+e-事象は、2.2 x 10⁶イベット

Etot(triggerCsl以外の4π検出器全 てのエネルギー和)スペクトル

3.2 x 10⁵のo-Psが得られている

3 最終結果(90%C.L.)

$$Br (e^+e^- \rightarrow invisible) = \frac{2.3}{2.2 \times 10^6 \times 0.87}$$

invisibleの検出効率 $< 1.2 \times 10^{-6}$
 $Br (o - Ps \rightarrow invisible) = \frac{2.3}{3.2 \times 10^5 \times 0.87}$
 $< 8.3 \times 10^{-6}$
(余剰次元へ) n=2の時 $k > 0.06 TeV$

まとめ

- o-Psの稀崩壊事象を調べる事でTeVスケールの余 剰次元を探った
- 目標とした感度はo-Ps崩壊分岐比にして、10-8
- 今回、昨年末に取得したパイロットランの解析を見 せたが、今年に入ってからのデータは解析していな いので見せる事が出来ない(申し訳ない)

backup

線源まわりの設計

- カロリメータの CsI(TI) をくりぬき、²²Na 線源、e⁺タグ用ファイバー、シリ カエアロジェルを中に(sourceCsI)
- 12 µ mのインナーマイラーで線源を固定
- シンチレーションファイバの一部を薄く潰して、e⁺タグとして使用
- ファイバの両端をカロリメータの外まで連れ出し、PMT で覗く

γ線カロリメーターの設計

線源から全方位に対し、back-to-backの単色 γ 511keV2発 が反応せずに通り抜ける 割合が10-9以下になるように設計した

2PMTの光量分布

- ・ PMT-A,PMT-Bの 光量分布
- 上図
 Plaに当たった時
- 下図

 ファイバー(腕部)
 に当たった時

triggerCsI(Energy vs Time)

CR vetoについて

CsISUMとNaISUMは、あるエネルギー以上の宇宙線パルスを観測したら、discriを掛け、coincidence registerに記録している

今回掛けたEadvのカット

Eadv	カット領域
CsISUM(LongGate)	$-55 \mathrm{keV} < \mathrm{CsISUMLong} < 201 \mathrm{keV}$
NaISUM(LongGate)	$-34 \mathrm{keV} < \mathrm{NaISUMLong} < 83 \mathrm{keV}$
sourceCsI(LongGate)	$-5 \mathrm{keV} < \mathrm{sourceCsILong} < 50 \mathrm{keV}$
triggerCsI(LongGate)	-10 keV < triggerCsILong < 40 keV
CsISUM(ShortGate)	-18ch < CsISUMShort < 14ch
NaISUM(ShortGate)	-10ch < NaISUMShort < 10ch
sourceCsI(ShortGate)	-4ch < sourceCsIShort < 6ch
triggerCsI(ShortGate)	-10ch <triggercsishort< 10ch<="" td=""></triggercsishort<>

表 4.2: Eadv のカットについて

EC(Electron Capture) バックグラウンド

10¹⁰ ECイベント(本実験最終感度の統計量)
 をGeant4でシミュレート <u>70の偽イベント</u>

o-Ps lifetime[ns]

35

モジュールクリア後の経過時間に依 存したペデスタルの動き

CsIJ094

36