The First Direct Measurement of the Hyperfine Splitting of Positronium Taikan Suehara (ICEPP, The University of Tokyo), contact: suehara@icepp.s.u-tokyo.ac.jp

A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito (Tokyo), M. Yoshida (KEK), T. Idehara, I. Ogawa, S. Kobayashi (Fukui) and S. Sabchevski (BAS, Bulgaria)

The HFS problem in Positronium

e+

 $O-PS(1^{3}S_{1})$ (203GHz) $p-PS(1^{1}S_{0})$

Positronium HFS is an identical target for precise measurements probing new physics.

Frequency measurement: very precise measurement possible. Pure QED system: very precise theoretical calculation possible.

Measuring the HFS

Direct method This presentation

Applying 203 GHz electromagnetic radiation to cause the o-Ps \leftrightarrow p-Ps direct transition. New technology (sub-THz)

No measurement yet.

Indirect method Formerly used

Measuring Zeeman splitting of o-Ps (a few GHz) Energy level of Ps under B-field under static magnetic field (~ 1 Tesla). The Zeeman split can be translated to HFS by a theoretical calculation. Used in all previous measurements.

Non-uniformity of the magnetic field is a serious systematic error source.

Key developments to observe direct HFS transition

HFS transition is a rare process ($\tau \sim 3 \times 10^8$ sec): high radiation intensity is essential for the HFS observation.

High power radiation source

at 203 GHz ($\lambda = 1.475$ mm)

High power, stable, frequency-tunable and coherent sub-THz radiation source is essential for the HFS observation.

Fabry-Perot resonator to accumulate photons

Using resonance to increase photon density up to 100 times.

We are developing a 203 GHz gyrotron: a novel radiation source for sub-THz range.

Gyrotron FU CW V, developed for the HFS measurement.

High power (up to 200 W)

- Monochromatic (line width : ~ 10 kHz)
- Tunable frequency (~ a few GHz)
- Stability (stabilization possible)

Schematic drawing of the planned cavity.

Metal mesh mirror: suitable for input coupling. High reflectivity (~99%) Efficient coupling Low loss (<10%)

Cu concave mirror: to improve Finesse (resonance factor) Focusing effect to confine radiation

Picture of a cavity test.

Au mesh plate $(20 \,\mu\text{m width}, 50 \,\mu\text{m spacing})$ Cu mirror

Resonance scan has been performed to obtain cavity parameters

\mathcal{F} > 630 is obtained.

Round-trip reflectivity > 99% - OK.

Now performing detailed optimization of the cavity.

Increase input coupling. less ohmic/diffraction loss.

Experimental Setup

Summary and plan

Schematic for the Ps-HFS detection setup.

Detection strategy: o-Ps decays into 3γ , slow (τ =138ns). p-Ps and annihilation (non-Ps) decays into 2γ , immediate. HFS transition (o-Ps to p-Ps) decays into 2γ , slow. **Energy + timing measurement can** efficiently identify HFS events. **Source & detectors:** 1MBq ²²Na source (545 keV max β +) β + is tagged by a plastic scintillator Four LaBr3 crystal scintillator $\sim \square$ (~3% energy resolution at 511 keV) for $2\gamma/3\gamma$ separation.

A new direct method of Ps-HFS measurement is under development. A high power gyrotron with 203 GHz resonant frequency was developed. Fabry-Perot cavity will be utilized to obtain high photon density. **The first observation of direct HFS** transition will be in this fall, leading to precise HFS measurements (comparable level to indirect method).