

LSW experiments with pulsed magnets +Vacuum Magnetic Birefringence (VMB)

- Magnet/bank: T.Yamazaki et al, NIM A 833, 122 (2016)
- VMB: X.Fan et al, arXiv: 1705.00495
- X-ray LSW: T.I. et al, PRL. 118, 071803 (2017)

Fundamental physics in vacuum

Pump-probe scheme for vacuum physics

Pump Probe	Laser (~1 PW)	Pulsed magnet	
Laser (optics)	Light-by-light scattering Four-wave mixing	Laser LSW VMB	
X rays (XFEL)	Laser-induced diffraction/birefringence	e X-ray LSW	

We use **pulsed pump** to get a high field

Pump-probe scheme for vacuum physics

Pulsed magnets

Magnet types

- Solenoid: good symmetry \rightarrow 80-100 T
- We need a transverse field over large length
- Racetrack: bad symmetry \rightarrow 31.7 T (XXL-coil)

<u>Merits</u>

- Intensity: LSW: B×L, VMB: B²×L
- VMB with IZ scheme: temporal field modulation

<u>Drawback</u>

Low duty: fast repetition

- Power supply: charging time of capacitors, 0.1 Hz
- Magnet: heating <-> cooling efficiency (LN2)
- \rightarrow as high as possible, hopefully to 0.1 Hz

Coil structures

Field map along the beam path

- Transverse field along the pipe center (inner diameter 5.3 mm)
- Tilted path (2.75°) \rightarrow smaller for the edges

Dot: measurement Line : finite element simulation in 3D (ANSYS)

Conventional backup metal

(Left) fitting the coil into a backup ring, (right) pressing it with plates

Drawbacks

- Expansion force (Maxwell stress) concentrates on the ring corners
- Large eddy current runs in the ring and plates to cancel the field

Dividing the metal into 20 pieces

- Avoid the concentration of the expansion force
- Divide the backup metal where eddy current runs

Reducing materials with small thermal conductivity \rightarrow Cooling efficiency

Power supply for high-rep. operation

- Left: conventional single-shot circuit
- Right: energy recycling circuit

One cycle

- Frist pulse (SCR1) \rightarrow positive field
- Second pulse (SCR2) → negative field
- Re-charge the capacitor by the energy lost by the two pulses

12 capacitors in total: 3mF, 1.9t → Dividing them into 4 units for transportability Max. voltage: 4.5kV (30 kJ)

Continuous operation

Pulse interval is adjustable: 30 Hz in this case Fields are stable(± 0.5%) after reaching equilibrium

Summary: current status of the field-generation system

Development of a field-generation system suited for repetitive operation

- Multiple racetracks
- → small field-volume, small heating, high cooling efficiency
- Power supply for a high-rep. use
- \rightarrow energy recycling scheme

9 T over 0.8 m with 0.1 Hz (cycle) has been achieved \rightarrow B²×L = 54 T² m

- NIM A 833, 122 (2016)

Pump-probe scheme for vacuum physics

The OVAL experiment

Observing VAcuum with Laser

- Testing setup with one magnet
- $B^2 \times L = 13.8 T^2 m$

Continuous DAQ

To observe VMB, a long-term run is necessary

- Cavity resonance has to survive pulsed fields

We must remove the disturbance of mechanical shocks

- The disturbance is decoupled by these bellows?

At present, it works

During the pulse

- No mechanical shock was observed at 9 T

After the pulse

Acoustic shock: arrives at 4 ms

 \rightarrow Resonance survives

N₂ measurement

We also measured k_{CM} and k_{F} of N_{2} gas (100-350 Pa)

Vacuum measurement

As a test, we applied 100 cycles of 9.0 T and -4.5 T \rightarrow 15 min

Future steps

Table of improvements to observe QED with a 6-month run

	This measurement	Target value	Gain	Upgrade plan/Status
Magnetic filed	9[T]	15[T]	2	Changing wound wire from Cu to Ag-Cu
Field length	0.2[m]	0.8[m]	4	Preparing for loading 4m optical bench now
Pulse width	1.2[ms]	4.8[ms]	2	The Modification of the power supply unit.
DAQ time	15[min]	180[days]	130	Building a stable DAQ system is on going
Finesse	350,000	650,000	2	Upgrade is succeeded
Intensity	0.03[mW]	5[mW]	40	Upgrade is succeeded
Intensity noise	1×10 ⁻⁴ [1/vHz]	1×10⁻⁵ [1/∨Hz]	3	Upgrade is succeeded

Improvements of optics have almost finished We need to combine it with magnets

- Work in progress!

Pump-probe scheme for vacuum physics

X-ray LSW search for ALPs

- First-phase experiment:
- DC x rays at SPring-8 BL19LXU: 3×10¹³ photon/s at 9.5 keV
- using 4 magnets
- 2 days for DAQ in Nov. 2015 \rightarrow 27,676 pulses!

12 vessels (LN2 100 *l*)

Setup

23

Time-energy distribution of events

- Time window: 2.1 ms (left)
- Energy window: beam energy (9.5 keV) ±2σ(detector resolution)

Limits on the coupling constant

- Next target: XFEL + 8 magnets
- 4×10¹¹ photon/pulse, 30 pulse/s, 2-day run
- Also, keep improving the magnet

Test of 8 magnets at SPring-8

Summary

We develop racetrack pulsed magnets and study vacuum physics (nonlinear QED, ALPs) with combination of x rays and optical lasers.

We keep improving our magnet toward higher fields.

Using the present version of magnets and XFEL,

- VMB
- x-ray LSW
- vacuum diffraction/birefringence
 experiments have started and begun to obtain results in their first phase.