Results of a Search for Paraphotons 9th Patras Workshop with Intense X-ray Beams at SPring-8 on Axions, WIMPs and WISPs

Toshiaki Inada University of Tokyo

Y. Tanaka, K. Tamasaku, K. Sawada, T. Ishikawa SPring-8/RIKEN Harima institute

Based on Phys. Lett. B 722 (2013) 301

9th Patras Workshop on Axions, WIMPs and WISPs

Paraphoton/Hidden Sector Photon

- Gauge bosons of hypothetical
 U(1) symmetry
- Predicted by string-based extensions of Standard Model
- Tiny mixing with ordinary photons
- Neutrino-like flavor oscillation
- Precise test of QED
- Abnormal heat transfer mechanism in stars
- One candidate of dark matter

Oscillation Probability for LSW Experiments

- Oscillation of the probability of $\gamma \rightarrow \gamma'$ and $\gamma' \rightarrow \gamma$
- Axion LSW by S. L. Adler et al (2008) \Rightarrow Paraphoton LSW $P_{\gamma \to \gamma'} = \left(\frac{\omega + \sqrt{\omega^2 - m_{\gamma'}^2}}{\sqrt{\omega^2 - m_{\gamma'}^2}}\chi\right)^2 \sin\left(\frac{L}{2}\left(\omega - \sqrt{\omega^2 - m_{\gamma'}^2}\right)\right)$

- Probed mass scales to the photon energy
- <u>Sources with different energies are important for extending the</u> <u>LSW limits</u>

Current Terrestrial Limits

- Optical LSW range: meV eV
- Below this: Microwave
- Above this: X-ray region
- Purely terrestrial- and intense
 X-ray source
- Synchrotron radiation facility
- ⇒R. Battesti et al (2010) @ ESRF for axion-LSW
- Extends LSW limits to higher masses

X-ray Intensity Frontier SPring-8 and our beamline BL19LXU

- SPring-8 (Super Photon ring at 8 GeV)
- 62 beamlines around 1.42 km electron ring
- X-rays from soft (\sim 1 keV) to hard (\sim 100 keV)
- BL19LXU (<u>BeamLine 19 Long X</u>-ray <u>U</u>ndulator)
- 30-m-long in-vacuum undulaot
- ⇒Most intense X-rays available today as a

continuous beam

BL19LXU	Value
	(after monochromator)
Output energy	$7.2–51~{ m keV}$
Beam intensity	$10^{13} - 10^{14} \text{ photon/s}$
	@7.2 - 30 keV
Line width	$\sim eV (FWHM)$
Beam size	${\sim}400~\mu{\rm m}$ (FWHM)
Pulse width/interval	40 ps/24 ns (~CW)

Beam Energies and Fluxes

9th Patras Workshop on Axions, WIMPs and WISPs

- 9 energies are used
- Fluxes of higher harmonics are relatively weaker

⇒We used 1st/3rd harmonics

harmonics	used energy (keV)	flux (photon/s)
n = 1 $n = 3$	7.27, 8.00, 9.00, 15.00, 16.00, 17.00 21.83, 23.00, 26.00	10^{14} 10^{13}

- Measured with a Si PIN photodiode
- <u>Accuracy better than (avg.) 2%</u>

Overview of Experimental Setup and Definition of the Oscillation Regions

Overview of Experimental Setup and Beamline Components

- Beams from the undulator has a continuous spectrum
- \Rightarrow Monochromated to $\Delta \omega / \omega \sim 10^{-4}$ with a Bragg condition
- Blocked by a 94-mm-thick lead shutter
- Only LSW photons are selected by a pair of total reflection mirrors
- Detected with a germanium detector in a experimental hatch

Overview of Experimental Setup and Beamline Components

Detection System - Setup -

9th Patras Workshop on Axions, WIMPs and WISPs

- Inside the experimental hatch -

- φ60 germanium crystal
- Shielded by 5 cm-thick leads
- Beams are injected through a φ30 collimator
- Energy spectrum is recorded by a peak-holed ADC for energy cuts

Component	Value
Ge crystal	diameter 60 mm
	thickness 25 mm
Detector window	
(CFRP plastic)	thickness 0.6 mm
Pb shield	thickness 50 mm
Beam collimator	diameter 30 mm

Energy Resolution of Ge Detector and Definition of Signal Region

- Measured with RI sources
- <u>157 eV (σ) @ 14.4 keV from ⁵⁷Co</u>
- Interpolated by the function of $\sigma = p_0 \sqrt{E} + p_1$ (keV)
- Defined beam energy ±2σ as a signal region

9th Patras Workshop on Axions, WIMPs and WISPs

Typical efficiencies: 23% @ 7 keV and 83% @ 26 keV

Setup of Main Measurements with Beam ON and OFF

- Beam ON
- Change beam energy for 9 times
- Livetime on each measurements: 5-9 hours

- Beam OFF
- Completely the same setup except for closing the main beam shutter
- 45.5 hours of livetime

- Paraphoton signal
- Statistically significant difference of the detector count rates between ON and OFF

Background Spectrum

- Arrows show the signal regions of 9 measurements
- No overlaps => commonly used for subtraction

- 10.5 keV and 12.7 keV peaks: Lead X-rays from shields and a collimator
- Avoided for the choice of beam energy
- Except for this, normal continuous spectrum
- BG rate in each signal region is \sim a few mHz

Background-Subtracted Spectrum

- One example of 9 keV measurement
- Bars are statistical errors (1 sigma) and signal region data with red points
- Paraphoton-like signal over +2 standard deviations was not detected! (Also with the other energy measurements)

- Hereafter, focus on the discussion of constraining the mixing angle
- Dashed line: a signal upper limit (95% C.L.) calculated from total counts in the signal region 15

Background-Subtracted Spectrum The Other Energy Measurements

9th Patras Workshop on Axions, WIMPs and WISPs

Significant excess was not observed

Calculation of Mixing Angle

9th Patras Workshop on Axions, WIMPs and WISPs

- ρ(y): Beam profile along the y direction
- Normalize its area to a unit
- Neutrino-like conversion probability

$$P_i(y) = \left[2\chi \sin\left(\frac{m_{\gamma'}^2 L_i'(y)}{4\omega}\right)\right]^2$$
 (for low masses)

- Depends on L, the oscillation region length!

Beam Size

- Space structure
- Measured with a slit scan along horizontal/vertical direction with a 10 μm pitch
- Vertical width $\sim 400 \,\mu\text{m}$ (FWHM)

Tilting Edges and Beam Width Effect

- Both edges of oscillation region (i.e. monochromator and first mirror) have shallow angles along the beam axis
- Length of oscillation region changes with respect to the local y positions!

- ΔL variances from beam width (~400 μ m)
- First oscillation region: a few mm <= Bragg angle ∼100 mrad</p>
- Second oscillation region: ~10 cm <= total reflection angle ~few mrad
- Integrate over each y contributions

Limits on the Mixing Angle

- 95% C.L exclusion limit (upper side is excluded)
- One example from a single 9.00 keV measurement

- Region (a): spiky structure from the sin functions of oscillation probabilities
- Region (b): smeared out due to the integration
- For heavy masses: oscillation length < ΔL variance

Combination of the Results

9th Patras Workshop on Axions, WIMPs and WISPs

- Obtain a combined result by the same procedure using χ^4 distributions and multiplying each others
- Spiky structures of the region (a) are compensated with 9 measurements

• The worst value appears at 1.39 eV:

$$\chi_{worst} = 8.01 \times 10^{-5}$$

- Represents our result

Systematic Errors

- Uncertainties of the beam intensities and detection efficiencies
- <u>Already taken into account by using 1σ decreased conservative values(*)</u>
- The other uncertainties: energy scale and oscillation region length

Factor	Contribution to χ_{worst}
*Beam intensities	(avg.) ± 0.40 %
*Detection efficiencies	$({ m avg.}) {}^{+0.64}_{-0.83} \%$
Absolute energy scale ($\Delta \omega = -18 \text{ eV}$)	$< \pm 0.01$ %
Oscillation lengths $(L_1 = 277 \pm 2 \text{ cm}, L_2 = 65.4 \pm 0.5 \text{ cm})$	$\frac{+0.52}{-0.15}$ %

- Appear in the phase of sin function
- Cause a shift of the whole limit line along the mass axis
 - $\Rightarrow \underline{\text{Traced } \chi_{worst} \text{ by changing the two parameters and}}_{\underline{\text{listed maximum deviations}}}$
- χ_{worst} + 0.52% represents our final result:

 $\chi < 8.06 \times 10^{-5}$ (95% C.L.)

9th Patras Workshop on Axions, WIMPs and WISPs

Comparison of the Results

- Probed mass region up to 26 keV
- 4-order-heavier than optical LSW ~ev

Most stringent as a LSW limit for this region

New X-ray source: Free Electron Laser, SACLA

- In public use since last year, and reaches to the designed performance in next year
- The same flux (s⁻¹) with SPring-8 and pulsed beam
 ⇒ Pulse width ~10 fs
- Time window of detector coincides with beam pulse
- Zero background count

Further Prospects 1/2

Paraphoton Search

2-order-improvements of S/N for one week measurement SACLA

9th Patras Workshop on Axions, WIMPs and WISPs

SPring-8

Further Prospects 2/2 Axion-like Particle Search

9th Patras Workshop on Axions, WIMPs and WISPs

Introduce photon-ALP conversion magnets to the

Summary

9th Patras Workshop on Axions, WIMPs and WISPs

- Paraphoton search using intense X-ray beams was performed at SPring-8.
- LSW method was applied and wall-penetrating LSW photons were searched with Ge detector.
- From the absence of paraphoton signals, a new experimental constraint was obtained:

 $\chi < 8.06 \times 10^{-5}$ (0.04 eV < m_{y'} < 26 keV, 95% C.L.)

Probed mass region is 4-order-heavier than optical LSW searches