ボース・アインシュタイン凝縮を目指した 高密度ポジトロニウム生成材料の開発

東大理, 東大素セ^A, 東大工^B, 産総研^C, 九大GIC^D, 高エ研^E, 量研^F, 原子力機構^G

<u>石田 明</u>,

 周健治,山田恭平,橋立佳央理,難波俊雄^A,浅井祥仁, 五神 真,田島陽平^B,蔡 恩美^B,吉岡孝高^B, 大島永康^C,オロークブライアン^C,満汐孝治^C, 伊藤賢志^C,熊谷和博^C,鈴木良一^C,藤野 茂^D, 兵頭俊夫^E,望月出海^E,和田 健^F,甲斐健師^G

平成31年3月14日

日本物理学会第74回年次大会(2019年)@九州大学伊都キャンパス

The University of Tokyo

目次

- ポジトロニウム (Ps) のボース・アイ ンシュタイン凝縮 (BEC) とその応用
- Ps-BEC の課題と解決策
- ・ Ps-BEC 実現の必須開発要素技術
- Ps 生成・濃縮・冷却ナノ反応器の開 発状況

ポジトロニウムの ボース・アインシュタイン凝縮(Ps-BEC)

<u>ボース・アインシュタイン凝縮(BEC)</u>

- 高密度低温のほとんど全ての粒子が単一量子状態を占める。
- ・原子レーザー、コヒーレンスがある

Ps-BEC

- Psは他の反物質系と比べて生成が容易
- ・質量が小さくBEC臨界温度が高い(10¹⁸ cm⁻³で14 K)
- ・反物質系で初のBECの有力候補
- ・Ps-BECは反物質レーザー

$$T_c = \frac{h^2}{2\pi m k_B} \left(\frac{n}{\zeta(3/2)}\right)^{\frac{2}{3}}$$

Ps-BEC は基礎科学研究や次世代光源に応用できる

1. <u>反物質に働く重力を</u> 原子干渉計を用いて測定

- 異なる経路を通るPsは、重力による 減速などを受けて位相が異なりうる。
- 重力の効果を見るのに必要な経路 長は 20 cm。 Phys. stat. sol. 4, 3419 (2007)

2. <u>511 keV ガンマ線レーザー</u>

Phys. Rev. A 92, 023820 (2015)

- *p*-Psが 2 本の 511 keV γ線に自
 己消滅することを利用
- Ps-BEC (原子レーザー)→ γ線 レーザー
- 従来の X線の 1/10 の波長による微細構造プローブ
- 高い透過率

2つの課題: Psの高密度化と高速冷却

<u>最大の問題</u> Ps は寿命が 142 ns と短い

<u>2つの課題</u>

- 1. 瞬間的 (< 50 ns) な 高密度 Ps の生成
- 2. Psの高速冷却 ~300 ns で 10 K 到達

Ps-BECを実現する新たな冷却手法 熱化とレーザー冷却の2段階

2019/3/13

2. ゾルゲル合成によるボトムアップ的開発 本手法による薄いシリカエアロゲルを用いて、KEKの低速 陽電子施設 (SPF-B1) でレーザー冷却の実証実験を行う。

3. 電子ビーム描画による開発

【現在検討中のアイデア】ナノテクで直接細孔形状を制御

まとめ

- Ps-BEC を実現して世界初の反物質レーザー を作りたい。
- Ps-BEC を利用して反物質重力測定実験やガンマ線レーザー開発を行う。
- 開発要素は3つ(高密度陽電子バンチ生成装置、Ps生成・濃縮・冷却材料、Ps冷却レーザー)
- Ps生成・濃縮・冷却シリカナノ反応器開発を、
 インプリント・ゾルゲル合成・電子ビーム描 画の3手法で取り組んでいる。
- Ps-BECの前段階として、 Ps レーザー冷却の 実証実験を、薄いシリカエアロゲルを用いて KEK-SPF-B1で行う。

