Search for Vacuum Magnetic Birefringence with Pulsed Magnets

<u>S. Kamioka¹</u>, X. Fan¹, T. Inada², T. Yamazaki², T. Namba², S. Asai¹, J. Omachi¹, K. Yoshioka³, M. Kuwata-Gonokami¹, A. Matsuo⁴, K. Kindo⁴, H. Nojiri⁵

¹Graduate School of Science, The University of Tokyo
²International Center for Elementary Particle Physics (ICEPP), The University of Tokyo
³Photon Science Center (PSC), The University of Tokyo
⁴The Institute for Solid State Physics (ISSP), The University of Tokyo
⁵Institute for Materials Research(IMR), Tohoku University

9th International workshop of Fundamental Physics Using Atoms 2017/1/10 @ Kyoto, Japan

1

Vacuum as fundamental physics

 Vacuum has rich structures which are related to fundamental physics...

Vacuum Polarization

Higgs Field (discovered in LHC) **Dark Energy** (Reacceleration of the Universe)

<Φ> = 246GeV

Higgs

Our target is vacuum polarization ≻It could induce the anisotropy of vacuum

Vacuum Magnetic Birefringence

- QED predicts the light and magnetic field can interact each other mediated by the virtual e⁻e⁺.
- As a result, the refractive index of vacuum could become anisotropic $\Delta n = n_{||} - n_{\perp} = k_{CM} \times B^2$ (QED predicts $k_{CM} = 4.0 \times 10^{-24} [T^{-2}]$)

VMB is the non-linear effect of electromagnetism, but not observed yet.

Contribution from ALPs

 The undiscovered particle which can couple to photons such as Axion-like particles (ALPs) could also induce the VMB

VMB has a good sensitivity for ALPs

Measurement of the VMB is also good probe for new physics

Concept of our experiment

Pulsed Magnets

Target spec

- Δn induce the change of polarization, and it is proportional to B^2L_B
- To obtain strong magnetic field and enough statistic, we use high repetitive pulsed magnet
- Fabry-perot cavity is used to enhance the effective path length by 2^* Finesse/ π .

Overview of Current setup

 Arranging optics and a magnet on a 1.2m*2.4m optical bench

Schematic view of setup

- One magnet between the two mirrors.
- Mirrors and polarizers are in the vacuum chamber connected to the magnet.

Current status 1 Magnet

- We are developing strong pulsed magnet with high repetition
- The length of the magnetic field is 20cm along the light.
- 11.4T for single shot and 8T 0.15Hz continuous operation was achieved

Current status (2) Fabry–Perot Cavity

 We made a L = 1.4m Fabry-perot cavity using R>99.999% mirrors

transmitted intensity is ~300,000

Test run

Summary of the Current status

- Magnet $B = 8T, L_B = 0.2m, 0.15Hz$
- Fabry-perot cavity F = 300,000, Intensity $40\mu W$
- Test run was done in December.
- 2 types of measurement were performed
 1 Measurement using N₂ for calibration
 2 Measurement in the vacuum

Measurement of N₂

- 8T and -4T magnetic field is applied inside the cavity by turns
- The change of the polarization is observed

11

Analysis of the N₂ measurement

- The change of the polarization is fitted by the magnetic field.
- From the pressure dependence, the anisotropy of the refractive index induced by the N₂ can be decided.

•
$$|k_{CM}^{N2}_{measured}| = 2.5*10^{-17} [T^{-2}Pa^{-1}]$$

Polarization change

Test run in the vacuum

- The test run in the vacuum was also done.
- ~100 pulse was applied inside the cavity for each polarity of the magnetic filed.
- For current sensitivity, no signal should be observed.

Analysis of vacuum measurement

- The change of the polarization is fitted by P₀ + P₁* B(t)² for each polarity of magnetic filed at the same time.
- The mean value of the distribution of P₁ is *consistent with 0 as expected.*

Future prospect

- Next upgrade toward the observation of VMB
 - ✓ Improvement of the pulsed magnet
 - Change the wound wire from Cu to Ag-Cu to achieve 20 T
 - Building longer cavity with more magnets

 \geq L =3.2m with 4 magnets (L_B = 0.8m)

- ✓ Improvement of the fabry-perot
 - more intensity is needed to reduce the noise

First observation of VMB will be accomplished in a year

Summary

- VMB is non-linear electro-magnetic effect predicted by QED, but not observed yet.
- We are developing a high-finesse fabry-perot cavity and strong pulsed magnets to observe VMB
- Test run of the current system is performed with 8T and
 0.2m pulsed magnet and F = 300,000 fabry-perot cavity.
- The obtained limit is 3×10⁻¹⁸ [T⁻²] (95C.L.)
- Upgrades of the magnets and cavity is under planning.