Search for Vacuum Magnetic Birefringence with Pulsed Magnets Shusei Kamioka¹

X. Fan¹, T. Inada², T. Yamazaki², T. Namba², S. Asai¹,

J. Omachi¹, K. Yoshioka³, M. Kuwata-Gonokami¹,

A. Matsuo⁴, K. Kindo⁴, H. Nojiri⁵

¹Graduate School of Science, The University of Tokyo ²International Center for Elementary Particle Physics (ICEPP), The University of Tokyo ³Photon Science Center (PSC), The University of Tokyo ⁴The Institute for Solid State Physics (ISSP), The University of Tokyo ⁵Institute for Materials Research(IMR), Tohoku University

Vacuum Magnetic Birefringence

- QED predicts the light and magnetic field can interact each other mediated by the virtual e⁻e⁺.
- As a result, the refractive index of vacuum could become anisotropic

VMB is the non-linear effect of electromagnetism, but not observed yet .

Contribution from ALPs

 The undiscovered particle which can couple to photons such as Axion-like particles (ALPs) could also induce the VMB

VMB has a good sensitivity for ALPs

Measurement of the VMB is also good probe for new physics

- Δn induce the change of polarization, and it is proportional to B^2L_B
- High repetitive pulsed magnets and high finesse Fabryperot cavity is used to obtain large polarization change
- QED predicted VMB will be observed with 6 months' DAQ

Current status ① Magnet

- We are developing strong pulsed magnet with high repetition
- The length of the magnetic field is 20cm along the light.
- The maximum magnetic field is limited by the strength of wound wire
 Shape of the coil

Current status (2) Fabry–Perot Cavity

 We made a L = 1.4m Fabry-perot cavity using R>99.999% mirrors

1_{st} Operation of current system

Summary of the Current status of OVAL experiment

- Magnet $B = 9T, L_B = 0.2m, 0.15Hz$
- Fabry-perot cavity F = 350,000, Intensity $30\mu W$
- 1_{st} run of current system was performed in December.
- The expected sensitivity is worse than the QED predicted value, but this measurement can clarify the present issues.
- 2 types of measurement were performed
 - **1** Measurement of the birefringence of N₂ gas for the validation
 - **2** Measurement in the vacuum

Overview of Current setup

 Arranging optics and a magnet on a 1.2m*2.4m optical bench

Schematic view of Our Current setup

- One magnet between the two mirrors.
- Mirrors and polarizers are in the vacuum chamber connected to the magnet.

N₂ measurement

- Vacuum chamber is filled with N₂ and 9T and -4 T magnetic field is applied to the interaction region.
- The intensity measured by the detector changes during applying the magnetic field.
 A high finesse cavity acts as a

N₂ measurement: Analysis

- The polarization change is fitted by using B^{filtered}(t).
- From the pressure dependence of polarization change, the anisotropy of the refractive index induced by N₂ can be decided

Operation in the Vacuum

- The chambers and magnets are evacuated
- Total 100 pulse was applied to the interaction region for each polarity of the magnetics field.

Vacuum measurement: Analysis

- The measured polarization change is fitted by p₀ + p₁×B² for each shot
- k_{CM} is calculated from p_1 and its limit can be obtained from the distribution of k_{CM} for every shot.

Future Steps of OVAL experiment

• Let's discuss the feasibility of observing VMB after upgrade and improvement of the issues found in this measurement

	This measurement	Target value	Gain	Upgrade plan/Status
Magnetic filed	9[T]	15[T]	3	Changing wound wire from Cu to Ag-Cu
Field length	0.2[m]	0.8[m]	4	Preparing for loading 4m optical bench now
Pulse width	1.2[ms]	4.8[ms]	2	The Modification of the power supply unit.
DAQ time	20[min]	180[days]	140	Building a stable DAQ system is on going
Finesse	350,000	650,000	2	Upgrade is succeeded
Intensity	0.03[mW]	5[mW]	40	Upgrade is succeeded
Intensity noise	1×10 ⁻⁴ [1/vHz]	1×10⁻⁵ [1/∨Hz]	3	Upgrade is succeeded

\rightarrow total gain is 5×10⁵

QED predicted VMB is observed as expected

Summary

- VMB is non-linear electro-magnetic effect predicted by QED, but not observed yet.
- We are developing a high-finesse fabry-perot cavity and strong pulsed magnets to observe VMB.
- 1_{st} run of the OVAL experiment was done with 9T and
 0.2m pulsed magnet and F = 350,000 fabry-perot cavity.
- The obtained limit is 2.2×10⁻¹⁸ [T⁻²] (95C.L.)
- Upgrades of the magnets and cavity is on going.