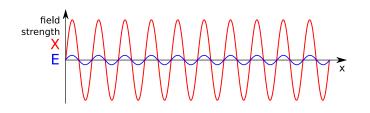
WISPy Dark Matter Search with a Dish Antenna Setup in Tokyo

Theory and Experiment

Stefan Knirck^{ab}

Toshiaki Inada^a, Takayuki Yamazaki^a, Joerg Jaeckel^b

^a The University of Tokyo, Japan
 ^b ITP, Heidelberg University, Germany



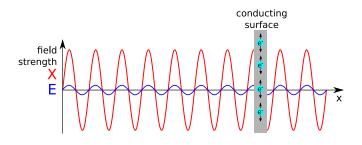
The Hidden Photon - viable dark matter candidate

Lagrangian

$$\mathcal{L} = -\frac{1}{4} \emph{F}_{\mu\nu} \emph{F}^{\mu\nu} - \frac{1}{4} \tilde{\emph{X}}_{\mu\nu} \tilde{\emph{X}}^{\mu\nu} - \frac{\chi}{2} \emph{F}_{\mu\nu} \tilde{\emph{X}}^{\mu\nu} + \frac{m_X^2}{2} \tilde{\emph{X}}_{\mu} \tilde{\emph{X}}^{\mu} + \emph{J}^{\mu} \emph{A}_{\mu}$$

Kinetic Mixing

$$\mathbf{E} = \chi \mathbf{X}$$

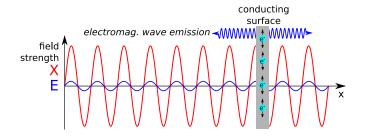


The Hidden Photon - viable dark matter candidate

Lagrangian

$$\mathcal{L} = -\frac{1}{4} \emph{F}_{\mu\nu} \emph{F}^{\mu\nu} - \frac{1}{4} \tilde{\emph{X}}_{\mu\nu} \tilde{\emph{X}}^{\mu\nu} - \frac{\chi}{2} \emph{F}_{\mu\nu} \tilde{\emph{X}}^{\mu\nu} + \frac{m_X^2}{2} \tilde{\emph{X}}_{\mu} \tilde{\emph{X}}^{\mu} + \emph{J}^{\mu} \emph{A}_{\mu}$$

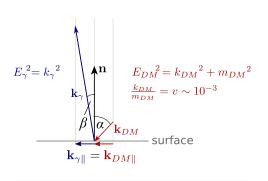
Kinetic Mixing

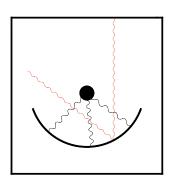

$$\mathbf{E} = \chi \mathbf{X}$$

The Hidden Photon - viable dark matter candidate

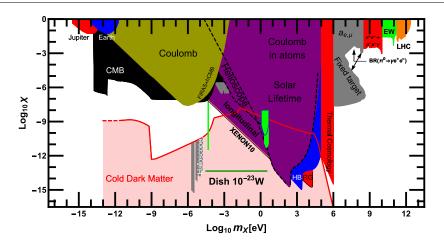
Lagrangian

$$\mathcal{L} = -rac{1}{4} extstyle F_{\mu
u} extstyle F^{\mu
u} - rac{1}{4} ilde{X}_{\mu
u} ilde{X}^{\mu
u} - rac{\chi}{2} extstyle F_{\mu
u} ilde{X}^{\mu
u} + rac{m_X^2}{2} ilde{X}_\mu ilde{X}^\mu + J^\mu A_\mu$$


Kinetic Mixing


$$\mathbf{E} = \chi \mathbf{X}$$

Dish Antenna Experiments

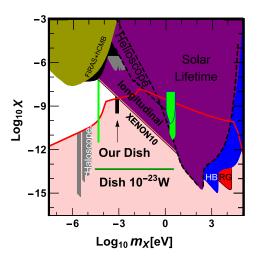


$$\sin(\beta) = v \sin(\alpha) \sim 10^{-3}$$

 $P_{\rm centre} \sim \chi^2 \rho_{\rm CDM} A_{\rm dish}$

Sensitivity

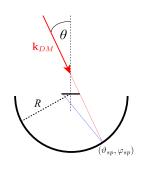
Sensitivity - Limits Comparison


		λ_{γ}	m_X [eV]	χ
FUNK (Germany)	arXiv:1410.0200, arXiv:1510.05869			
spherical (13 m ²)		optical	10^0	10^{-11}
	*	radio	$10^{-5} - 10^{-4}$	10^{-13}
Minowa (Tokyo) arXiv:1509.00785				
parabolic (0.2 m²)		optical	10^0	10^{-12}
conversion plate (4 m²)		radio	10^{-5}	10^{-12}
Our Experiment (Tokyo)				
conversion plate (0.2m ²)	*	\sim mm	10^{-3}	$\sim 10^{-10}$

*: not yet measured

Our Experiment: first setup with mm-wave-technology

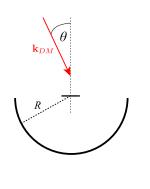
Sensitivity

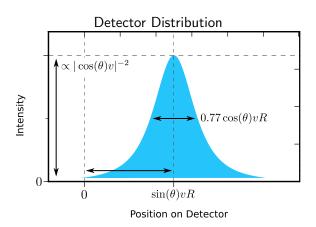


TheoryDirectional Resolution

A Directional Search

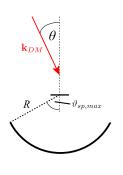
$$\sin(\beta) = v \sin(\alpha)$$

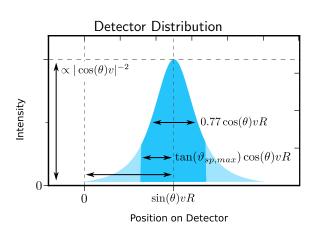

Ray Incident Position:


$$\frac{\Delta \mathbf{x}}{R} = \left(\begin{array}{c} \sin \theta \\ 0 \end{array}\right) \mathbf{v} - \left(\begin{array}{c} \cos \varphi_{\mathit{sp}} \\ \sin \varphi_{\mathit{sp}} \end{array}\right) \tan \vartheta_{\mathit{sp}} \cos \theta \mathbf{v} + \mathcal{O}(\mathbf{v}^2)$$

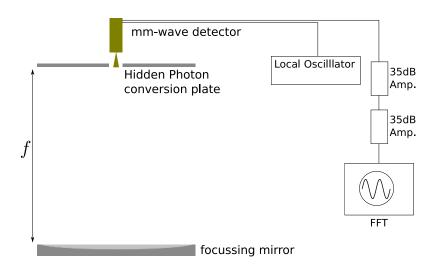
A Directional Search

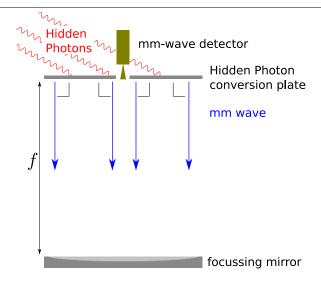
$$\sin(\beta) = v \sin(\alpha)$$

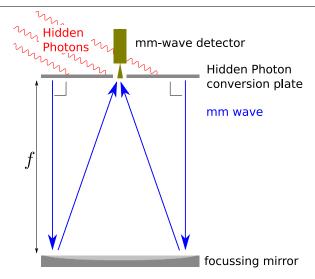


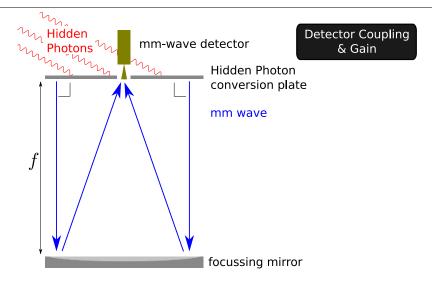


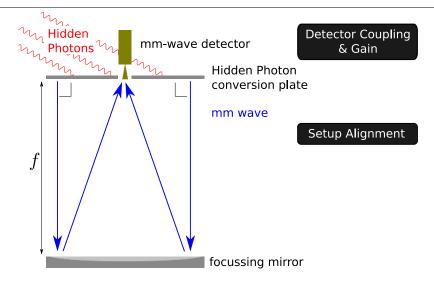
A Directional Search

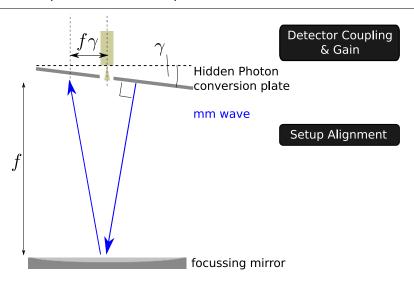

$$\sin(\beta) = v \sin(\alpha)$$

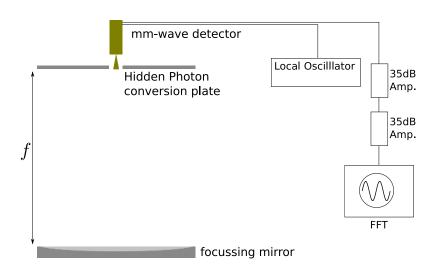


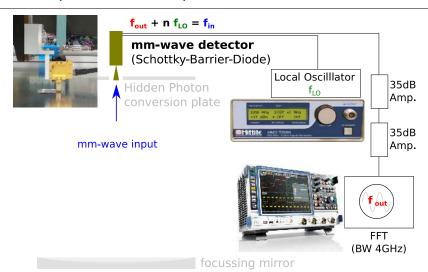


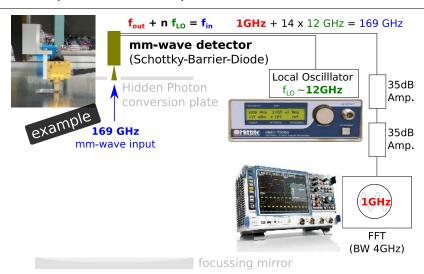

Experiment our mm-wave setup

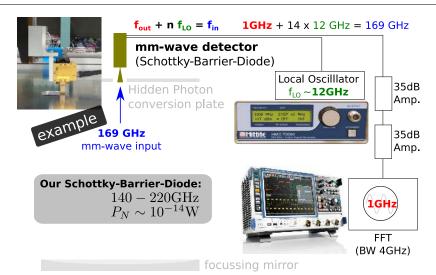

Our Experimental Setup - Overview

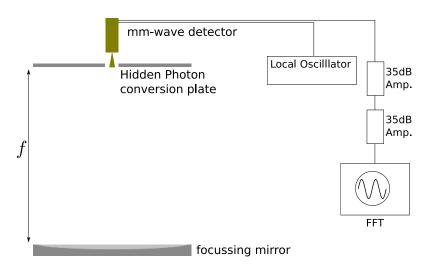


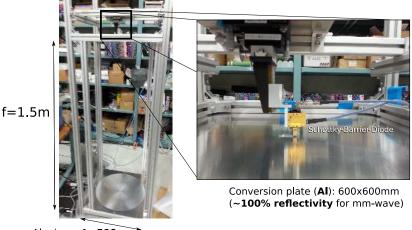


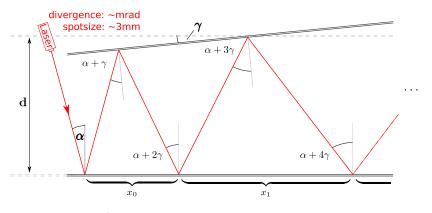









Introduction Theory Experiment Conclusion


Introduction Theory Experiment Conclusion

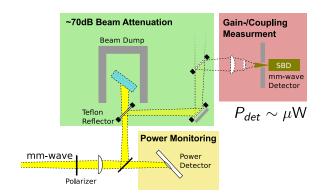
Our Experimental Setup

Al mirror $\Phi = 500$ mm, surface accuracy << 1mm

Alignment Check

$$\gamma = \frac{\Delta x}{4d\cos\alpha} \lesssim \frac{1\text{mm}}{4 \cdot 1480\text{mm} \cos(10^\circ)} \sim 2 \times 10^{-4}$$

(need
$$\gamma < 10^{-3}$$
)



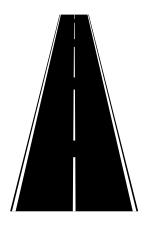
Detector Performance

Gyrotron (Fukui)

 $P_{out} \sim 20 ext{W}$ $\lambda_{out} \sim 1.6 ext{mm}$

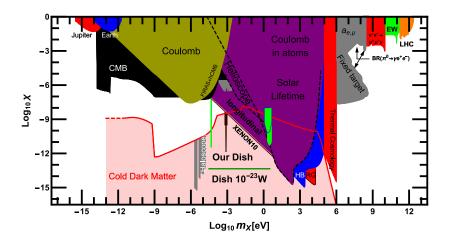
Introduction Theory Experiment Conclusion

Detector Performance

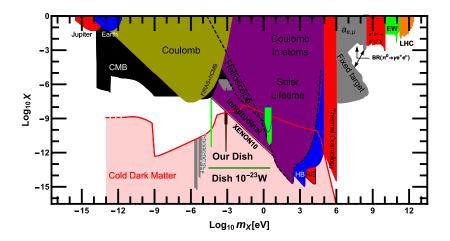

Gyrotron (Fukui)

 $P_{out} \sim 20 ext{W}$ $\lambda_{out} \sim 1.6 ext{mm}$

Roadmap & Outlook



October - November first actual DM measurement, first preliminary result


from December re-measurment of detector performance to improve limit

from around mid 2017
Dielectric Multi-Layered-Dish to increase signal (c.f. DESY-PROC-2016-03)

Conclusion

Thank you very much

