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Ps - BEC

* Ps: Thelightestatom
Advantage

Very high critical temperature G116
-

of BEC
¢ e.g.)14 K @ 10*® /cm3

> Ps is the best candidate for
the first BEC with anti-matter

Novel applications of Ps - BEC:

[ Precise measurements of
anti-matter gravity

[ Realization of 511 keV laser
using decaying gamma rays

—~10%°

S
3
>,

)
O

1072

10°

10*

Goal

BEC phase
over the lines

107°

107~/

10° 10° 10" 1010°
Critical Temperature (K)
2



Challenges: High Density and Cooling

—~10°°F
@ Difficult because of 5 F Goal
Short lifetime as 142 ns i; B \
.21016—_ A
Two Challenges in lifetime I~ - 1
— H Current
O High density 10'® /cm? B Ps
O Cooling 10 K 102
Currently :
10%5 /cm3 ™1, 150 K ™2 108 BEC pha.se
S over the lines
Both need much 10*F
improvement! I I N SN RN NN N NN N B N

10° 107 10° 102 10" 1010°

*1:S. Mariazziet al. Phys. Rev. Lett. 104, 243401 (2010). Critical Temperature (K)
*2 : D. B. Cassidy etal. physica status solidi 4, 3419 (2007). 3



Our strategy:

'wo-Stage Cooling

Thermalizatior

and Laser Cooling

Using two cooling processes: efficient in different Ps temperature region

Described in K. Shu et al. J. Phys. B 49, 104001 (2016).

Internal void
107 spin-polarized positrons/bunch 100 nm X 100 nm X 100 nm
focused into 100 nm 4000 spin-
polarized Ps

beam

Laser beams from six directions

Positron | -

/ created

4 x 1018 /cm3

/

Magnified view

e

1 K cavity made by silica (SiO,)
which is transparent to the laser

1. Down to 300 K: Energy exchange by collisions with cold silica (thermalization process)
2. Down to 10 K: Laser cooling (Doppler cooling)



Model of the Simulation

7 Cold silica wall 7
> Variables for each Ps
1. Collisions with * Velocity
the silica walls * [Internalstate
(Thermalization) 1. 1s
N 2. 2p
e 3. decayed
2. Ps-Pstwo-body

elastic scatterings 3. Photon
absorptions/emissions

 Variablesof every Ps are tracked at the same time
* 3interactionsareintegrated
* Detailsarein a poster session by A. Ishida today



Thermalization Model and Parameters

* The classical model by Nagashima et al. <well-tested for Ps in large pores

from Y. Nagashima et al. Phys. Rev. A, 52, 258(1995)
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M depends on kinetic energy of Ps
Estimated by various experiments

e Estimation of the dependence:
E
M(E) = po + p1 exp (p—z)

Legends:
DBS(1987):T. Chang et al. Phys. Lett. A 126, 189

ACAR (1995): Y. Nagashima et al. Phys. Rev. A52, 258
ACAR(1998): Y. Nagashimaetal. ). Phys. B 31, 329
2y/3y(2013): K. Shibuya et al. Phys. Rev. A 52, 258
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E,,:Ps average kinetic energy, mp,: Ps mass,
L : Mean free path of scatterings,
M : Effective of mass of scatteing bodies,
T: Temperature

Energy (eV)
Measured values superimposed  °©



Evaluation of Ps Thermalization

Included
e (Classicalmodel with three M

estimation <
* Thetwo body elastic scatterings 2107
S
An initial condition qé. M
» Ps initial kinetic energy: 0.8 eV @ 10
from Y. Nagashima et al. Phys. Rev. A 52, 258(1995)
» An initial number of Ps: 4000 10
» Silica cavity:
100 nm x 100 nm x 100 nm, 1K ’

lo Uncertainty of M

300 Kin 100 ns

Very slow for full thermalization

e Cooledto 300 Kin 100 ns
 Coolingto 10K is too slow
> Laser coolingis importantafter 300K

IR BT T o ey b by
100 200 300 400 500 600

o

Time (ns)
Time evolution of Ps temperature

v’ Precise measurementis necessary



Laser

Ps internal state

7
/

/’5.1eV
/

/
/

= 243 nm=1.23 PHz (UV)

cooling of Ps

2p (t=3.2 ns)

AP

Resonance between 1s — 2p will be used
Cooledinevery3.2 nsx 2 =6.4 nsin average



Requirements for the Laser: Long pulse

Two requirements for efficient cooling especially for Ps:

(D Long pulse

* Ps coolingtakes the order of
the lifetime (>100 ns)

40 wJ pulse

0.8

0.6

Intensity (Arb.)

* Laser shouldbe pulsed with
300 ns width 0.4
(much longer than usual)

0.2

[
I . . .
* Pulse energyis 40 ul to Ile. 'r.”e.Ctllo.n "?‘t.t=9

O I I I I I I
saturate cooling cycle -200 0 200 400 600
Time (ns)

Laser intensity vs Time



Requirements for the Laser:
Broad bandwidth & Frequency shift

Two requirements for efficient cooling especially for Ps: 1s-2p
. . R
(2)Broad bandwidth & Frequency shift es‘fnce
= 12 [For For &
* DopplerbroadeningforPsis £ 5 —— .

. o = 1rhotPs cold Psa
quite large because of its light > : :
mass 2 08r E

c.f. 500 GHz at 300 K € g6L -

- t=0 ns -

. 04 n

Broad bandwidth - .

To cool Ps with various velocities 0.2 - .

oL C T

Frequency shift —600 -500 -400 -300 -200 -100 O
To follow smaller Doppler shift of Laser Frequency Detune (GHz)

cold Ps

Frequency Profile of the Cooling Laser
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Requirements for the Laser:
Broad bandwidth & Frequency shift

Two special requirements for efficient Ps cooling: 1s-2p
Resonance

2 Broadbandwidth & Frequency shift $
| 3T 60 GHz shiftin 300 ns "
 DopplerbroadeningforPs is < na .
quite large because of its light > : .
mass 2 08 — .
c.f. 240 GHz at 300 K E ogh |
- t=300 ns / -
Broad bandwidth 041 " .
To cool all of Ps with various 0.2 [ .

velocities 0 S N g
-600 -500 -400 -300 -200 -100 O

: L F Det H
Frequency shift aser Frequency Detune (GHz)

To follow smaller Doppler shift of
cooled Ps

Frequency Profile of the Cooling Laser
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Laser Specifications

| Summary of required specifications |

Pulse energy 40 wJ
Center frequency 1.23 PHz - D(t)
Frequency detune D(0 ns)=300 GHz

(D(t)) D(300 ns)=240 GHz
Bandwidth (20) 140 GHz
Time duration (20) 300 ns
Beam waist(20) 200 um

Very special specs!
Especially: fastand well-controlled frequency shifting in pulsed mode

New trial for optics!!!



Design of the Laser System

Newly designed for
Ps cooling

Ti:Sapphire

injection seeded Ti:sapphire laser
@ Q-switched ]

Pump Laser

10 mJ

EOM2 (b) EOMA1 (a)

Sdeband Frequency Shifter

40 wJ
sHe |—20THZ | g

>
820 THz 1.23 PHz(by THG)
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Design of the Laser System

Newly designed for L , _
Ps cooling injection seeded Ti:sapphirelaser _
T ' Q-switched
e~ Pump Laser
10 mJ >
I N -----------------1
I- ¢ 10 mW I
| EOM?2 (b) EOM1 (a)
\ I C?Iedneel)rz ?Odr F re q u e n Cy S h Ifte r « éiEgi:i:i:E=E=E=E:E=E=E=E=:E:E:EE:E:E:E:E Z
(c) i ZOG<—>HZ (b) ZOGHZ (a) CW
bl . } I } |
f f 410 THz f

Idea of the design:
1. Controlingfrequencyin Continuous Wave mode with a third frequency
¢ Both of shifting and broadeningare possible by EOMs 14




Design of the Laser System

NeWIydeSignedfOr Zrn-------------------

. injection seeded Ti:sapphirelaser
Ps cooling [ ' Q-switched I
Ti:Sapphi
: e~ Pump Laser :
‘ 1mW
(c) EOM2 (b) EOM1 (a)
\ (?edneebrzft](?r Frequency Shlfter « éé%;:5:5:5:5:5:5:5:5:5:5:z:e:;:;;:z:e:;:5
40 wJ
she |—410THz [ .- M,
820 THz 1.23 PHz(by THG)

Idea of the design:
2. Seeding the CW laserinto Ti:Sapphireto generate pulsed laser
% Generate pulsed laser with controlled frequency 15




Development of the cooling laser

Theinitial part (CW seed laser)

Laser Diodek

opnextHL730lMG
(InGaAsP)\. ,,.i..

Home-made External Cavity Diode Laser * Oscillating at desired ~410 THz
Y Compact « Powerfulenough (~10 mW)
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Development of the cooling laser

Theinitial part (CW seed laser)

: Las rDlode
opnextHL73UlMG

Gratps

(InGaAsPﬁ)ﬂ}. be vz B
Next: S
» Designing Ti:Sapphire g

oscillator for 300 ns pulse §
and injection seeding e-

YrLompact

0 1000 2000 3000 4000 5000
Time (s)
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Evaluation of the Cooling

< or
0. . B <[ t=380 ns
510° £ Without the laser -
@© e B
o [ -
I / |
g2 r -
e 3
10 & f—
1_....I....I....I....I....I.... E....I...I...I...I...I....
0 100 200 300 400 500 600 -60 -40 -20 O 20 40 60
Time (ns) Velocity (km/s)
Time evolution of Ps temperature Ps velocity distribution

(Calculated by simulated temperature)

 Withoutthe laser, coolingis too slow (by Best fit estimation of M)



Evaluation of the Cooling

3 oF
® ot the | < t=380ns 11K
510° =\ Without the laser - :
AN = t=380 ns With laser
o [ z
o 4 3
e10r - >~ =
CH: l .............. 3
10 & é_
With the laser _ 70 K
g [ RS RS S ST A = I ol IR R B -
0 100 200 300 400 500 600 -60 -40 -20 O 20 40 60
Time (ns) Velocity (km/s)
Time evolution of Ps temperature Ps velocity distribution
(Calculated by simulated temperature)
 Withoutthe laser, coolingis too slow (by Best fit estimation of M)

With the laser, cooling from ~300 K is accelerated
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Evaluation of the Cooling

Without the laser

o
N
IIIIIIII| T T TTTTIT

10 ECritical temperature

With the laser

oo by by by by
100 200 300 400 500 600
Time (ns)

o

Time evolution of Ps temperature

Arb.

- t=380 ns 7 K (broad) +

— t=380 ns 30% condensate (peak)

— t=450 ns

= 11K

L oK
60 40 -20 O 20 40 60

Velocity (km/s)

Ps velocity distribution

(Calculated by simulated temperature)

Without the laser, cooling is too slow (by Best fit estimation of M)
With the laser, cooling from ~300 K is accelerated
Compared with the critical temperature, BEC transition will happen at

400 ns!
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Roadmap

1. Precise Ps Doppler spectroscopy (in 2 years)

® Establishmentofa methodologyforcold Ps
® Solving uncertainty of Ps thermalization processwith silica

2. Pslaser cooling (in 4 years)

® Developmentofthe laser system with long pulse, wide bandwidth,
frequency shift

3. Developing a dense positron system
® 10’ e*into 100 nm diameterin a hanoseconds bunch

4. Ps BEC

® Combingall the technologies!

21



Principle of Doppler-sensitive
two-photon spectroscopy of Ps

 Conventionaltechniqueis not precise for 10 K Ps or BEC
 We will use Doppler-sensitive two-photon spectroscopy (New for Ps)

E Two photons of
@ t ek, 410 nm wavelength

410nm pulsed laser -0.76eV— 34 le, /
-1.7eV—

1. Excited to 3s by absorbing
co-propagatingtwo photons

2. lonize3s-Psto freee*ande

3. Thee* annihilatesintoy-rays -6.8eV—

1s

 Dopplereffectis doubled because two-photon: sensitive to Ps temperature
 Resonancecan be measured via SSPALS

( D. B. Cassidyetal. App. Phys. Lett. 88, 194105(2006) )
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Laser Requirements for Doppler Spectroscopy

Laser Spec. fortem perature measurement

Wave length 410 nm
Pulse energy 1m)
Time duration A few ns
Bandwidth (FWHM) 25 GHz
Freq. tunable range 150 GHz
beam waist (20) 850 um
Repetition rate 100 Hz

(O Visible wavelength
(O Easily achievable bandwidth

» Design of the laser is under study

Excited Ps ratio

0.2
[| x?/ndf 3.105/4
L Constant 0.118 + 0.007273
| Mean 0.3335 + 1.669
01 5 | Ps Temperature (K) 11.82 + 1.648
0.1
0.05 |
OF
1 l 1 1 1 1 l 1 1 1 1 l 1
-50 0 50
Frequency (GHz)

Expected resonance curve for 10 K Ps
with 107 Ps in total, at t=300 ns

(SHG of Ti:Sapphirelaseris a promising candidate)

Plan to
B Confirm feasibility of the method

B Measurethermalization processof Ps with cold silica



Goal for Dense Positron

Currentat AIST microbeam
Goalfor Ps-BEC 1 stage brightness-enhancement-system

Number of positrons 107 e*/bunch  Number of positrons  10* e*/bunch

Beam waist <100 nm Beam waist 25 um
Pulse width <5ns Pulse width ~ Us
Positron Energy <5 keV Positron Energy 0.5~ 30 keV

Principle of positron focusing (brightness enhancement):

Focusing lens I

bunched e* beam

N. Oshima et al. J. Appl. Phys. 103, 094916 (2008). “

Re-moderated positronsare
 Perpendicularto surface
Re-moderator * MonochromaticEnergy

I * With focused waist




Planned Upgrade of Positron Beam

Two necessary improvements:

Buncher for spin-polarized positron 108 e*/bunch 2x10° e*/bunch

Beam compression ratio by Focusinglens 1/10 1/20 - 1/30

With 20% re-moderation efficiency, 107 e* in 100 nm
by 3-stage brightness-enhancement-system

->I I I I Silica target
@

n=2x10° e* 4x108 e* 8x107 e* 2x107 e* 2x107 e*
p=15mm = 750um " 20um "P2um " 100 nm
At target

» Buncherand beam optics are now under detailed consideration 25



Summary

We proposedand evaluated a new experimental scheme shown to be
possibleto realize Ps-BECby:

1. Thermalization process with cold silica (down to 300 K)

2. Laser cooling (downto 10 K)

The Cooling laser is specialfor:
1. Long pulse—300 nstime duration
2. Broadbandwidth—140 GHz
3. Frequencyshift—60 GHz < New optics for efficient cooling
CW seed ECDL s ready
Next: Ti:Sapphireinjection seeding laser including frequency shift

Several tasks are under detailed study and preparation:
1. Doppler-enhanced 1s- 3s spectroscopy usingtwo-photon excitation
2. Designinga buncherand beam optics for 107 spin-polarized e*/bunch
in 100 nm waist by 20 times more e & factor 2 strongfocusing



