ポジトロニウム 超微細構造の 直接測定の現状

<u>宮崎彬</u>,山崎高幸^A,末原大幹^A,難波俊雄^A,浅井祥仁, 小林富雄^A,斎藤晴雄^B,出原敏孝^{C,}小川勇^C,立松芳典^C

東大理,東大素セ^A,東大総文^B,福井大遠赤セ^C,

- 203GHzの光を照射し, o-Ps→p-Psに直接(M1)誘導遷移させる
- o-Ps→p-Psはスピン禁制のM1遷移であり,かつPs-HFSの値が極めて大きい(203GHz = 0.84meV)ため3乗に反比例して遷移確率が非常に小さい(3.37x10⁻⁸/sec)

→ハイパワー(>10kW)の203GHz光(ミリ波)が必要

•遷移曲線を描くために

周波数を変化させる必要もある

2つのハイパワーミリ波デバイス

周波数変化

Akira Miyazaki

Fabry-Pérot cavity

・共振鋭さ Γ=1.7µm 共振器へのパワー導入効率 C=62% → 20kW
 ・シリコン基板上メッシュの水冷に成功

Akira Miyazaki

アクリルライトガイド
で光をフランジ外部へ

t0.1プラスチックシンチレータ

•LaBr₃にガンマ線が来た時刻と off-lineでdelayed coincidenceを とってo-Ps由来イベントをセレクト

・陽電子放出時刻をプラシンでタグ

鉛で覆って線源からLaBr₃ 結晶に来るガンマ線を除去

- •LaBr₃結晶でback-to-back 511keV ガンマ線を検出
- ・金メッシュ鏡をガスチェンバー窓に流用

 そ窓が別にあると干渉する
- ・シリコン基板なので可視光を通さず,ライトガイドの遮光を兼ねる

まとめ

- Ps-HFSを世界で初めて直接測定する
- 202.9GHzー点における遷移は去年観測に成功した
- 発振器にジャイロトロン, 共振器にFabry-Pérot cavityを用いる周 波数可変ハイパワーミリ波光学系を開発した
- ポジトロニウム生成系,ガンマ線検出系,ガスチェンバーも完成
- 今週は光学系のエージング中であり,年内に203.4 GHzにおける
- 半年以内にPs-HFSの値をO(100ppm)で測定する
 Ps-HFS検証へ向けて
- Ps-HFSの検証(15 ppm)は、ミリ波のパワー測定システムの精度 を現在の10%から0.3%以下に改善するイノベーションが必要
- 磁場がないためにポジトロンがビーム領域に効率良く生成できず,統計が足りないラポジトロンビームの利用
- 物質の効果を除去するために真空中で実験