サブミリ波を用いたポジトロニウム 超微細構造の精密測定

光学系の現状と検出器系

宮崎彬^A, 末原大幹^A, 石田明^A, 秋元銀河^A, 難波俊雄^A, 浅井祥仁^A, 小林富雄^A, 斎藤晴雄^B, 漆崎裕一^C, 小川勇^C, 出原敏孝^C, S.Sabchevski^D

^ 東大理・東大素粒子センター, ^B 東大院総合文化,

^c福井大遠赤センター, [□]ブルガリア科学アカデミー

京都大学原子炉実験所専門研究会 「陽電子科学とその理工学への応用」 2009.11.20 @京都大学原子炉実験所

ポジトロニウムと ポジトロニウム超微細構造について

ポジトロニウム(Ps)のエネルギー準位と超微細構造(HFS)

- e⁺e⁻の束縛系
 spin=1:オルソポジトロニウム (o-Ps, 3γ崩壊, τ=142ns)
 spin=0:パラポジトロニウム (p-Ps, 2γ崩壊, τ=0.125ns)
- o-Ps とp-Ps の間のエネルギー差 HFS = 203GHz (0.84meV) (c.f. H原子のHFS=1.4GHz)
- Spin相互作用に由来
 +高次の量子補正が効く

$$\begin{array}{c} |\uparrow\uparrow\rangle \\ \hline 0-\text{Ps(SPIN=1)} & \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \\ \hline 1 & \downarrow\downarrow\rangle \\ \hline 203\text{GHz} \\ \hline p-\text{Ps(SPIN=0)} & \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \end{array}$$

エネルギー準位

何が面白いのか? レプトンペアのクリーンな系 →精密な予測、測定が可能 o-Psは光子と同じ量子数 →未知粒子Xが介在する反応 p-Psは真空と同じ量子数

HFSの値は実験と理論で乖離している

Akira Miyazaki

203.387

203.385

203.389

203.391

3.9σのズL

203.393

HFS [GHz]

203.395

サブミリ波を用いた直接測定

- o-Ps がサブミリ波によってp-Ps に遷移
- p-Psはすぐに (寿命125 psec) 2γ崩壊 → 2γ崩壊率の上昇
- 入力波の周波数に対して, 203GHzを中心とした共鳴曲線が得られる

直接測定の"鍵"

- 高いphoton密度が必要
 - o-Ps → p-PsはM1遷移: τ = 3x10⁸ sec
 - σ~1/v→3 GHzの70倍遷移しにくい
- 数GHzの波長チューニングが必要

全体のセットアップ

ジャイロトロン

ジャイロトロン(1) 写真

ジャイロトロン(2)特性

- Gyrotron FU CW V
- 609W出力を達成 (導波管出口で440W)。
- 中心周波数203.08 GHz (実測値)。
 - 周波数変調幅は数百MHz程度。
 数GHz変調可能なジャイロトロンも開発中で
 今後upgradeを予定。
 - 別の共振モードにより199GHzの
 off-resonance測定・比較は可能。
- ・ 単色性は極めて高く、10kHz程度。 (他のジャイロトロンでの実測値)

ファブリー・ペロー共振器

203 GHz ファブリ・ペロー共振器の概要

クオーツに金を蒸着した メッシュミラー

銅凹面ミラー

- 入射側はメッシュミラーで効率的にパワーを導入
- 出射側は銅凹面ミラーで横方向の閉じこめ
- ピエゾステージで共振長さをコントロール
- 出射側にパワーモニタを設置, 共振を測定

Cavity test (1) setup

から入力

- ジャイロトロンを用いて福井大学でCavity試験を行った
- Cavityの透過パワーをパイロエレクトリックディテクタで測定 •

パイロエレ クトリック ディテクタ

Spectrum

Cavity test (2) 測定データ

• Finesse: 共鳴の鋭さ=パワー蓄積度の指標 $\mathcal{F} = \frac{\delta \nu}{\Gamma} \sim \frac{2\pi}{1-\rho}$ 共鳴ピークの幅から分かる

• Finesse~650, 実験に必要なphoton密度100倍を達成

γ線検出器及びβ+線検出器

LaBr₃ (Ce) シンチレータ

◆高いエネルギー分解能(FWHM 4% @511 keV)を持つ

- ◆2γ崩壊に対するo-Psの3γ崩壊の混入を効果的に抑えられる
- ◆さらにBack-to-backのセレクションを加えることで,3γバックグラウンドを徹底的に落とす

検出器周りのセットアップ(1)

検出器周りのセットアップ(2)

検出器周りのセットアップ(3)

検出器周りのセットアップ(4)

Conclusion & Future Plan

- ポジトロニウムのHFSを, o-Psとp-Ps間のM1直 接遷移によって測定する
- サブテラヘルツの光学系を開発し,パラメータの最適化を進めている
- γ線及びβ⁺線検出器の配置,さらに効果的に
 S/Nを上げる設計を行っている
- ・1年以内に遷移の確認実験を行う

BACKUP

ジャイロトロン(1) 高周波源の比較

200 GHz付近で高出力を得られるのは現状ではジャイロトロンのみ。

ジャイロトロン 動作原理

- 電子銃から出た電子は強力な磁場により サイクロトロン運動をする
 - サイクロトロン周波数 f_c=eB/2πm_oγ
 - 本実験で使用するジャイロトロンはB_{max}=8T
- 磁場中心の横方向にサイクロトロン周波数
 で共振する共振器を形成しておくとそこで
 その周波数の電磁波が発振する
- 発振した電磁波は上部のウインドウから取り出す。使用済みの電子ビームはウインドウ下部のコレクタに収集される
- 出力強度の変調:電子銃の電子放出頻度 を変える
 周波数変調:磁場・電子速度(γ)を変える
 (変調幅が広い場合共振器にも変調機構 が必要)

共振器のパラメータ(1)

Finesse

・ Cavityへのパワー蓄積度(ロスの少なさ)を表す

 $\mathcal{F} = \frac{\delta \nu}{\Gamma} \sim \frac{2\pi}{1-\rho}$ - δv =共振モード間隔 - Γ =共振ピーク幅 (FWHM) - ρ =両面反射率

- ・ 共振器の損失(鏡面損失・ガス損失・回折損失)が影響
- 両面反射率99%でFinesse=628:目標値 銅ミラーの反射率は99.85%(計算値)
 メッシュミラーの反射率が最大の決定要因
- ・ 共振モード間隔は2/λ=737μm → 「<1.17μmが必要

共振器のパラメータ(2)

Input coupling

Cavityへのパワー導入効率を表す

 $C = T_b T_{mesh} C_{mode}$ C: input coupling, T_b: Cavity導人前透過率, T_{mesh}: メッシュ透過率, C_{mode}: Cavity mode結合度

- T_{mesh}はFinesseにも影響する (T_{mesh} ~ 1-R_{mesh} ~ 1/F)
- Cavityへの蓄積パワーは

$$P_{\rm acc} = C \left(\frac{F}{\pi}\right)^2 P_{\rm in}$$

Mesh のロスを無視した場合, 反射率は高い方が良い(1乗で効く)

CはCavityからの反射・Cavityの透過から求められるが、
 困難がある。(透過はcalibrationが難しく,反射は干渉の影響がある)

Meshの最適化

- 必要条件

 R_{mesh}>0.99 (P_{acc} ~ R_{mesh})

 ロス(1 R_{mesh} T_{mesh})が少ない (特にT_{mesh}に比べ)
 電磁場シミュレーションによりR, Tを メッシュパラメータを変えながら調べた。
- ・いくつかのメッシュを実際に製作した(下記)。

mesh material	line width	line separation	$\operatorname{reflectance}$	${\it transmittance}$	finesse
gold	$20~\mu{\rm m}$	$50~\mu{ m m}$	99.3%	0.32%	650
gold	$10~\mu{ m m}$	$50~\mu{ m m}$	98.6%	0.75%	290
silver	$50 \ \mu m$	$130~\mu{ m m}$	96.9%	2.70%	180

reflectanceとtransmittanceはシミュレーション, finesse(後述)は実測値