大強度ミリ波を用いた ポジトロニウム超微細構造の 直接測定

<u>宮崎彬</u>,山崎高幸^A,末原大幹^A, 難波俊雄^A,浅井祥仁,小林富雄^A,斎藤晴雄^B, 立松芳典^C,小川勇^C,出原敏孝^C

東大理,東大素セ^A,東大総文^B,福井大遠赤セ^C

物理学会第69回年次大会@東海大学湘南キャンパス

ポジトロニウム (Ps)

ポジトロニウムは e⁻とe⁺の束縛系 - 最も軽い水素様原子 - 最も簡単な粒子-反粒子系

ハドロンからくる不定性がほぼ無視できるため, 高い精度で量子電磁気学(QED)の検証が可能

o-Psは*p*-Psより準位が高い超微細構造(Ps-HFS) = 203 GHz
 →ミリ波帯(波長1.5mm)のため未だ直接測定されていない
 ☆本研究ではPs-HFSを世界で初めて直接測定した

•203GHzのミリ波によりo-Psからp-Psへ誘導遷移(M1遷移)
•遷移したp-Ps が短寿命(125 ps)で2つのガンマ線に崩壊 →2γ崩壊率がPs-HFSを中心としたBreit-Wigner曲線を描く

Psが短寿命のため10 kW以上のハイパワー安定ミリ波が必要

ジャイロトロンとファブリペロー共振器

ミリ波デバイスを新たに開発

•核融合の点光源「ジャイロトロン」を精密科学へ応用 (100W) •レーザーで使われる「ファブリペロー共振器」をミリ波応用 (20kW)

●核融合の点光源「ジャイロトロン」を精密科学へ応用 (100W)
 ●レーザーで使われる「ファブリペロー共振器」をミリ波応用 (20kW)

●核融合の点光源「ジャイロトロン」を精密科学へ応用 (100W)
 ●レーザーで使われる「ファブリペロー共振器」をミリ波応用 (20kW)

o-Ps (長寿命142ns)→*p*-Ps→2γ (back-to-back 511keV)が遷移シグナル

ファブリペロー共振器 &LaBr₃(Ce)結晶

取得したデータ(測定期間:2013年5月から12月)

全8周波数点でデータ取得 (e⁺タグとback-to-back γ線のコインシデンス)

frequency	power	livetime
180.59 GHz	41 kW	33 hours
201.83 GHz	22 kW	37 hours
202.64 GHz	23 kW	31 hours
203.00 GHz	21 kW	18 hours
203.25 GHz	21 kW	37 hours
203.51 GHz	41 kW	34 hours
204.56 GHz	20 kW	34 hours
205.31 GHz	24 kW	50 hours

周波数はジャイロトロン内部cavityを交換することで変更

観測された遷移シグナルの例

ジャイロトロンをパルス動作(duty 30%)させ, beam OFFでバックグラウンドを見積もる

→パワー情報から「遷移確率(反応断面積)」へ焼きなおす

遷移確率をBreit-Wigner関数でFit

15

まとめ

- ポジトロニウムはQEDを検証する上で興味深い系であるが、その超微細構造はミリ波帯ゆえに直接測定されていなかった
- ミリ波技術開発に取り組み、ジャイロトロン発振器、 Fabry-Pérot共振器によってポジトロニウム超微細構造の初直接測定に成功
- 値は $\Delta_{\text{HFS}}^{\text{Ps}} = 203.39_{-0.14}^{+0.15} (\text{stat.}) \pm 0.11 (\text{syst.}) \text{ GHz}$
- ・
 同時に*p*-Psの寿命(崩壊幅)も初直接測定
- 値は $\tau_{p-Ps} = 89^{+18}_{-15}$ (stat.) ± 10 (syst.) ps
- 参考 arXiv:1403.0312