

測定の概要

宮崎彬, 山崎高幸^A, 末原大幹^A, 秋元銀河, 難波俊雄^A, 浅井祥仁, 小林富雄^A,斎藤晴雄^B, 漆崎裕一^C, 小川勇^C, 出原敏孝^C, S.Sabchevski^D

東大理, ^東大素粒子センター, ^B東大院総合文化 ^C福井大遠赤センター, ^Dブルガリア科学アカデミー

> 日本物理学会第65回年次大会 2010.3.23 @岡山大学津島キャンパス

outline

- ポジトロニウムと超微細構造について
- サブテラヘルツ波をもちいた直接測定
- ・ジャイロトロン
- ・ファブリー・ペロー共振器
- Summary

ポジトロニウムと ポジトロニウム超微細構造について

HFS測定に関する過去の実験と我々の方針

<過去の実験>

203GHzの直接測定は不可能

→過去の実験は全て,磁場中でのゼーマン効果を見ていた

つまり<u>間接測定しかなされていない</u>

しかも過去の実験と理論値には3.9σのズレがある

<我々の2つの実験>

◆ 精度を上げるアプローチ:物質の効果を正しく入れる+高精度の磁場
 →3GHz測定(石田, 佐々木)

◆磁場を使わないで直接測定
<u>初めての直接測定</u>(このtalk)→203GHz測定(宮崎,山崎)

HFS直接測定の概要

- o-Ps がサブテラヘルツ波によってp-Ps に遷移
- p-Psはすぐに (寿命125 psec) 2γ崩壊 → 2γ崩壊率の上昇
- 入力波の周波数に対して,203GHzを中心とした共鳴曲線が得られる
- 世界初のサブテラヘルツ波領域での分光実験である

直接測定の鍵

- 高いphoton密度が決定的に重要
 - o-Ps → p-PsはM1遷移: τ = 3x10⁸ sec
 - o-Psの寿命142 nsecに比べ14桁も大きく, それだけ遷移しにくい
 - σ~1/v→3GHz (ゼーマン効果による間接測定)の70倍遷移しにくい

Akira Miyazaki

- Next Stepとして周波数可変性が必要
 - on-resonanceとoff-resonanceを確認後, 共鳴曲線の幅1.2GHzをスイープする

0.27

- 将来的に周波数に対する可変性が求められる
- 以下が測定の鍵となる
 ジャイロトロン
 大強度・高安定光源
 周波数可変なものも開発中
 ファブリー・ペロー共振器
 photon密度をさらに100倍
 周波数可変なサル振器
 - ・ 周波数可変な共振器

206

207

全体のセットアップ

ジャイロトロン

ジャイロトロン(1) 写真

- 電子銃から出た電子は強力な磁場によ りサイクロトロン運動をする
 - サイクロトロン周波数 f_c=eB/2πm₀γ
 - 本実験で使用するジャイロトロンはB~
 7.36 Tで運用
- 磁場中心の横方向にサイクロトロン周 波数で共振する共振器を形成してお くとそこでその周波数の電磁波が発 振する
- 発振した電磁波は上部のウインドウから取り出す。使用済みの電子ビームはウインドウ下部のコレクタに収集される
- 出力強度の変調:電子銃の電子放出頻度を変える
 周波数変調:磁場・電子速度(γ)を変える
 (変調幅が広い場合共振器にも変調機構が必要)

本測定用に開発した ジャイロトロン(Gyrotron FU CW V)

約2m

ジャイロトロン(2)特性

- Gyrotron FU CW V
- ウィンドウ直後で609Wの出力を達成
- 中心周波数203.08 GHz • (実測値, 偏光はTE03 mode)。
 - 周波数変調幅は数百MHz程度。 数GHz変調可能なジャイロトロンも開発中で 今後upgradeを予定。
 - 別の共振モードにより199GHzの off-resonance測定・比較は可能。
- 単色性は極めて高く、10kHz程度。 (他のジャイロトロンでの実測値)

206

Radiation frequency [GHz]

207

右図の測定すべき共鳴曲線のうち, 赤線で示した部分の測定が可能 →遷移の確認実験をまず目指す 共鳴曲線全体の測定はupgrade後 201 202 203 204 205

Akira Miyazaki

200

ファブリー・ペロー共振器

- 入射側はメッシュミラーで効率的にパワーを導入
- 出射側は銅凹面ミラーで横方向の閉じこめ
 - 平面-平面の共振器より安定化し、ミラー同士の平行調節の精度が共進長ほどは効かない
- ピエゾステージで共振長をsub-micronでコントロール
- 透過側にパワーモニタ(パイロエレクトリックディテクター)を固定,共振を測定

ファブリー・ペロー共振器 (2) 写真 (絵とは左右逆)

ファブリー・ペロー共振器(3)必要条件

Finesse \mathcal{F}

・ 共鳴の鋭さ=パワー蓄積度の指標(~photon密度の倍率×2π)

1.14 µm

step[µm]

680

- $\mathcal{F} \sim 650$:実験に必要なphoton密度100倍を達成
- ジャイロトロンのパワー導入効率
- 現在最大の課題
- mode matchingをコントロールするための伝送系を開発している

Summary

- ポジトロニウムのHFSを, o-Psとp-Ps間のM1直接
 遷移によって測定する
- サブテラヘルツの光学系を開発している
- ファブリー・ペロー共振器に必要な条件のうち, finesseについては目標を達成しており, Couplingの研究を現在行っている
- Couplingを改善するための伝送系は次の発表

BACKUP

ジャイロトロン 高周波源の比較

200 GHz付近で高出力を得られるのは現状ではジャイロトロンのみ。

ジャイロトロン 動作原理

- 電子銃から出た電子は強力な磁場により サイクロトロン運動をする
 - サイクロトロン周波数 f_c=eB/2πm_oγ
 - 本実験で使用するジャイロトロンはB_{max}=8T
- 磁場中心の横方向にサイクロトロン周波数
 で共振する共振器を形成しておくとそこで
 その周波数の電磁波が発振する
- 発振した電磁波は上部のウインドウから取り出す。使用済みの電子ビームはウインドウ下部のコレクタに収集される
- 出力強度の変調:電子銃の電子放出頻度 を変える
 周波数変調:磁場・電子速度(γ)を変える
 (変調幅が広い場合共振器にも変調機構 が必要)

共振器のパラメータ(1)

Finesse

・ Cavityへのパワー蓄積度(ロスの少なさ)を表す

 $\mathcal{F} = \frac{\delta \nu}{\Gamma} \sim \frac{2\pi}{1-\rho}$ - δv =共振モード間隔 - Γ =共振ピーク幅 (FWHM) - ρ =両面反射率

- ・ 共振器の損失(鏡面損失・ガス損失・回折損失)が影響
- 両面反射率99%でFinesse=628:目標値 銅ミラーの反射率は99.85%(計算値)
 メッシュミラーの反射率が最大の決定要因
- ・ 共振モード間隔は2/λ=737μm → 「<1.17μmが必要

共振器のパラメータ(2)

Input coupling

Cavityへのパワー導入効率を表す

 $C = T_b T_{mesh} C_{mode}$ C: input coupling, T_b: Cavity導人前透過率, T_{mesh}: メッシュ透過率, C_{mode}: Cavity mode結合度

- T_{mesh}はFinesseにも影響する (T_{mesh} ~ 1-R_{mesh} ~ 1/F)
- Cavityへの蓄積パワーは

$$P_{\rm acc} = C \left(\frac{F}{\pi}\right)^2 P_{\rm in}$$

Mesh のロスを無視した場合, 反射率は高い方が良い(1乗で効く)

CはCavityからの反射・Cavityの透過から求められるが、
 困難がある。(透過はcalibrationが難しく,反射は干渉の影響がある)

Meshの最適化

- 必要条件

 R_{mesh}>0.99 (P_{acc} ~ R_{mesh})

 ロス(1 R_{mesh} T_{mesh})が少ない (特にT_{mesh}に比べ)
 電磁場シミュレーションによりR, Tを メッシュパラメータを変えながら調べた。
- ・いくつかのメッシュを実際に製作した(下記)。

mesh material	line width	line separation	$\operatorname{reflectance}$	${\it transmittance}$	finesse
gold	$20~\mu{\rm m}$	$50~\mu{ m m}$	99.3%	0.32%	650
gold	$10~\mu{ m m}$	$50~\mu{ m m}$	98.6%	0.75%	290
silver	$50 \ \mu m$	$130~\mu{ m m}$	96.9%	2.70%	180

reflectanceとtransmittanceはシミュレーション, finesse(後述)は実測値

塩ビによるpower測定

TE03 modeの伝播

- ■今回用いる偏光, TE03 modelはpowerに
- して3つの同心円を持つ
- ■塩ビ板のスクリーンにはこのpowerによる温度上昇が投影される
- ■ホイヘンスの原理で波動計算した(右図)
 ■ジャイロトロン出口付近では中央の輪がもっとも強い
- ■far-fieldではフラウンホーファー回折に よって外側の輪が最も強くなる ■輪の半径の実験値はほぼ理論通り
- (下図の赤:外円,緑:中円,青:内円)

ファブリー・ペロー共振器 入力mode測定

■伝播するビームのパワープロファイルを調べることが出来る ■レンズによって収束されたビームは,共振器内部modeと効率よ くCoupleすることが出来ない → Gaussian Converter

屈折率と反射率

■203GHzに対するSiO2の屈折率は1.95(溶融シリカ)、2.1(結晶クオーツ)である Grischkowsky et al. J. Opt. Soc. Am. B, vol. 7, 10 (1990)

■今回は溶融SiO2を使用しているので反射率は10%、全体での反射率は18%

■レンズなので、実際にはここからずれが生じる

■垂直入射からずれると偏光と入射角、透過角によって界面での反射率が異なる
 ■従って無限級数和もとれない

■理論的に簡単には評価出来ないと思われる

β+線検出器とγ線検出器

LaBr₃ (Ce) シンチレータ

◆高いエネルギー分解能(FWHM 4% @511 keV)を持つ

- ◆2γ崩壊に対するo-Psの3γ崩壊の混入を効果的に抑えられる
- ◆さらにBack-to-backのセレクションを加えることで,3γバックグラウンドを徹底的に落とす

検出器周りのセットアップ(1)

検出器周りのセットアップ(2)

検出器周りのセットアップ(3)

検出器周りのセットアップ(4)

