New Experiment for the First Direct Measurement of Positronium Hyperfine Splitting with sub-THz Light

<u>A. Miyazaki</u>¹, T. Yamazaki¹, T. Suehara¹, T. Namba¹, S. Asai¹, T. Kobayashi¹, H. Saito², T. Idehara³, I. Ogawa³, Y. Urushizaki³ and S. Sabchevski³

¹ Department of Physics, Graduate School of Science and International Center for Elementary Particle Physics (ICEPP), The University of Tokyo

² Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo ³ Research Center for Development of Far-Infrared Region, University of Fukui (FIR-FU)

Hyperfine Splitting (HFS) of Positronium and its Problem

HFS is the energy difference between orthopositronium (o-Ps) and parapositronium (p-Ps)

The value is about 203GHz (0.84meV)

There is a large discrepancy of 3.9 σ in HFS value

energy level
$$\uparrow \uparrow >$$

o-Ps (SPIN=1) $\frac{1}{\sqrt{2}} (\uparrow \downarrow > + \downarrow \uparrow >)$
 $\downarrow \downarrow \downarrow >$
HFS = 203GHz
p-Ps (SPIN=0) $\frac{1}{\sqrt{2}} (\uparrow \downarrow > - \downarrow \uparrow >)$

All previous experiments are indirect.

They applied a strong magnetic field (~1T) to cause Zeeman splitting, and indirectly calculated HFS value. We suspect non-uniformity of this magnetic field is one of the underestimated systematic errors. \rightarrow We have to confirm it !!

Akira Miyazaki

Our two approaches

Experiment 1

• Direct observation WITHOUT magnetic field

- This is the first trial to observe directly the HFS of positronium
- Completely free from systematic errors of magnetic field.
- Technology for sub-THz is still under development
 - → Technologically challenging

Experiment 2

• Precise measurement WITH static magnetic field

- Traditional approaches + new ideas
- Next speaker will explain it in detail.

Basic idea of direct measurement

- 203 GHz light causes the transition from o-Ps into p-Ps
- p-Ps decays (lifetime 125 psec) into 2γ -rays \rightarrow increase of 2γ decay ratio
- Resonance curve (mean: HFS=203.4 GHz, FWHM: $1/2\pi\tau_{p-Ps}$ =1.2 GHz)
- We can directly measure HFS value and also measure the lifetime of p-Ps as a bi-product.
- The first spectroscopy experiment in sub-THz region

Three KEY technologies

- o-Ps \rightarrow p-Ps is M1 transition (seriously suppressed) : probability = 3×10⁻⁹ sec ⁻¹
- Extremely small compare to o-Ps decay probability : 1/142nsec = 7×10⁶sec⁻¹

 \rightarrow High photon flux (>10kW) is crucial

This is achieved with three new devices

Gyrotron 2 : current status

Power

•Stable power 300W is obtained now \rightarrow It is enough for our experiment

Tunability

- First Step : fixed frequency Gyrotron is operated just on-pole to observe transition.
- Second Step : whole resonance curve But tunability O(1) GHz is a big trial.
 We are now developing new Gyrotron,

Components

- Efficient introduction of power : Mesh mirror (Half-mirror in sub-THz region)
- Stable resonance : Cu concave mirror (transverse stability, confocal resonance)
- Cavity length control with accuracy O(0.1µm) : Piezo stage
- Monitoring power inside cavity : Pyroelectric detector Akira Miyazaki

Fabry-Pérot Cavity 2

- <u>Efficiency of Gyrotron power introduction into the cavity</u>
- Requirement : $\mathcal{C} \sim 50\%$ (intrinsic limit; absorption of input light by mesh)
 - Currently *C* is about 40%
 - \rightarrow we have chance to improve \rightarrow Mode matching is necessary.
 - \rightarrow Coupling problem connects strongly to efficient transportation system.

Transportation System : setup

M1 (parabolic mirror)

Power estimation

γ-ray detection system

A thin(100μm) plastic scintillator detects the timing of positron emission.
Timing information is used to suppress the large background from prompt decay of positron and to estimate the thermalization effect.

Signal estimation

① e ⁺ stops in beam region	4 x 10 ⁻⁵
o-Ps formation prob.	0.2 x 0.75
2 Acceptance of LaBr ₃ x 6 back-to-back and 511keV from beam region	8 x 10 ⁻⁴
signal prob.	1 x 10 ⁻⁹

• The stopping probability(1) and the efficiency of γ -rays(2) are small.

 \rightarrow They can be improved with optimization of detection system (NOT YET).

- Even with current design, the detection of direct transition is feasible with rate O(1) mHz using 1MBq ²²Na source
- Background events can be strongly suppressed with the timing information and back-to-back selection.
 - → This is achieved with LaBr₃ (Ce) crystal scintillator, which has extremely high energy resolution (FWHM 4% @ 511keV) and timing resolution (FWHM 200psec @ 511keV).

Current status & future plan

- There is 3.9 σ discrepancy in HFS value.
- We are preparing the first observation of the direct transition WITHOUT magnetic field.
- A high power light source (Gyrotron) and a quasioptical cavity (Fabry-Pérot cavity) are almost ready.
- A better introduction of light is nearing completion with new transportation system
- Optimization of γ-ray detection system will also finish in this summer. (not yet)
- Experiment will start from this autumn.