Direct measurement of the Hyperfine Structure of Ground -State Positronium

<u>T. Namba</u>, A. Miyazaki[★], T. Yamazaki,
 T. Suehara, S. Asai[★], T. Kobayashi, H. Saito^{*},
 Y. Tatematsu^ℑ, I. Ogawa^ℑ, T. Idehara^ℑ

ICEPP, University of Tokyo *Graduate school of Science, University of Tokyo *Graduate school of Arts and Sciences, University of Tokyo FIR center, University of Fukui

- Ps is the bound state of electron (e⁻) & positron (e⁺)
 - Particle-antiparticle system
 - Only two lepton system
 - The lightest hydrogen-like atom
 - Good target to study bound state Quantum ElectroDynamics (QED)

Two ground states of Ps

Ortho-Positronium (o-Ps)

- Spin triplet state (S=1)
- Long lifetime (142ns)
- Decays to odd gammas (3γ, (5γ, ...)) Continuous γ-ray spectrum

Para-Positronium (o-Ps)

- Spin singlet state (S=0)
- Short lifetime (125ps)
- Decays to even gammas (2γ, (4γ, ...))
 511keV monochromatic γ-rays

Positronium Hyperfine Splitting (Ps-HFS)

Ortho-Positronium (o-Ps)

Energy level difference between two states =Ps Hyperfine Splitting (Ps-HFS)

- 203GHz (=0.84meV), large value! (cf. Hydrogen 1.4GHz)
- Origin of Ps-HFS:
 - Spin-spin interaction
 - Virtual photon oscillation

Para-Positronium (p-Ps)

Ps HFS history

Ps HFS history

Ps HFS history

Our method: Direct measurement of Ps-HFS

Ortho-Positronium (o-Ps)

- o-Ps→p-Ps: M1 transition (suppressed)
- Natural transition rate=3.37×10⁻⁸ s⁻¹
 - Extremely small compared
 - with o-Ps decay rate $(7.04 \times 10^6 \text{ s}^{-1})$

Para-Positronium (p-Ps)

 \bigcirc

Our method: Direct measurement of Ps-HFS

Millimeter ~ sub-millimeter: a frequency range with rich scientific potential Frequency $10^5 ext{ 10}^6 ext{ 10}^7 ext{ 10}^8 ext{ 10}^9 ext{ 10}^{10} ext{ 10}^{11} ext{ 10}^{12} ext{ 10}^{13} ext{ 10}^{14} ext{ 10}^{15} ext{ 10}^{16} ext{ 10}^{17} ext{ 10}^{18} ext{ 10}^{19} ext{ 10}^{20}$ Microwaves THz Infrared $\frac{\Theta}{\Theta}$ Ultraviolet X-rays and γ Radiation Radio- and TV-waves Wavelength 10^{3} 10^{2} 10^{1} 10^{0} 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11} (m) Electronics Optics

• Intermediate region

200GHz ~ 1.5mm ~ 0.8meV

- Particle-like for O(>10THz) region
- Wave-like for O(<100GHz) region
- THz gap: little existing technology
 - Challenging, but can be a new `eye' for basic science

Experimental setup

Gyrotron: Strong millimeter wave source

Gyrotron utilizes cyclotron motion of electrons to resonate a cavity inside the solenoid

[Characteristics]

- 10GHz-1THz
- High power (used as heaters for nuclear fusion)
- Continuous/pulse mode operation

Gyrotron: FU-CW-GI

- FU-CW-GI: Dedicated to our experiment
- Gaussian beam power = 300W (5Hz, duty 30%)
- $\Delta f=1MHz$
- Output power is stabilized by a feedback system (<±10%)

Gyrotron improvement: FU-CW-V → FU-CW-GI

FU-CW-V

First gyrotron for Ps-HFS measurement

• Fix frequency (202.9GHz)

• TE₀₃ mode output (needs external mode converter) FU-CW-GI Second gyrotron

- Output frequency is tunable by replacing cavities
- Gauss mode output with an internal mode converter

FU-CW-GI (Improved characteristics)

Experimental setup

T. NAMBA, (ICEPP, U-Tokyo)

Gold mesh mirror for the input side

- An input mirror of the cavity is required to have
 - high reflectivity
 - reasonable coupling

- A mesh mirror is developed
 - Sub-millimeter size gold mesh is evaporated on silicon plate
 - Reflectivity: 99.15%, Transparency: 0.53% (Simulated by CST MICROWAVE STUDIO)

Cavity performance

From reflected power: Coupling=62% From transmitted power: Finesse=430 (means ×136 accumulation)

Gain of the cavity is 85!

Mirror improvement

Base material of the mesh mirror is changed
 Quartz base → High resistivity silicon base

Thermal conductivity 5W/Km

The mesh is melted down by high heat load (>10kW accumulation)

(Magnified view)

Thermal conductivity 148W/Km

Can be cooled down by water at the mirror holder

T. NAMBA, (ICEPP, U-Tokyo)

Experimental setup

Positronium assembly & γ-ray detectors

Signal = 2γ decay of *o*-Ps (monochromatic 511keV • back-to-back)

²²Na e⁺ source and e⁺ detector

 Optical photons are emitted when e⁺ passes through a plastic scintillator, and they are measured with photomultipliers (PMTs).

γ-ray detectors & Fabry-Pérot cavity

 Four γ-ray detectors are placed as near to high power radiation as possible in order to detect γ rays efficiently.

Improvement on the assembly: Cavity gas

Cavity is filled with gas for positron stopping & Ps formation

Previous setup: isobutane 0.1atm + N_2 1.9atm

Rotation motion of isobutane makes an absorption peak around 203GHz

Improvement on the assembly: Cavity gas

Cavity is filled with gas for positron stopping & Ps formation

New setup: neopentane 1.0atm

Symmetric shape!

- No absorption around 200GHz region
- Ps creation rate is similar to the previous gas
- A little bit expensive (~\$10/g)

Data analysis (Based on the first observation of Ps-HFS transition @ 202.9GHz)

ID	frequency	power	duration	live time (ON)	live time (OFF)	trigger rate
Ι	$203~\mathrm{GHz}$	11.0 kW	$4.3 \mathrm{~days}$	$7.0 \times 10^4 \text{ sec}$	$1.6 \times 10^5 \text{ sec}$	949 Hz
Π	$140 \mathrm{GHz}$	$3.3 \mathrm{kW}$	$3.3 \mathrm{~days}$	$4.3 \times 10^4 \text{ sec}$	$1.0 \times 10^5 \text{ sec}$	$949~\mathrm{Hz}$
III	$203 \mathrm{~GHz}$	$0.0 \mathrm{kW}$	$2.4 \mathrm{~days}$	$4.1 \times 10^4 \text{ sec}$	$9.6 \times 10^4 \text{ sec}$	936 Hz
IV	$203 \mathrm{~GHz}$	$5.6 \mathrm{kW}$	$2.8 \mathrm{~days}$	$3.8 \times 10^4 \text{ sec}$	$8.9 \times 10^4 \text{ sec}$	932 Hz

Direct observation of Ps-HFS transition

- Signal
 - ✓ o-Ps→p-Ps→2γ : long lifetime (τ = 142ns) of o-Ps & two back-toback 511 keV γ rays
- Background
 - ✓ o-Ps→3γ : contamination of 3γ events due to the detector resolution
 - ✓ o-Ps→2 γ (pick-off) : e⁺ annihilation with e⁻ in gas molecule
 - \checkmark accidental overlap of the triggered e⁺ and uncorrelated γ rays
- Gyrotron output is pulse output (20Hz•duty 30%). Background is estimated using events during beam OFF period.

Event selection I (Delayed Coincidence)

- Timing difference between the positron tag and the γ-ray detector signal
- Signals are enhanced by delayed coincidence

Event selection II (Back-to-back 511keV cut)

Events are selected by γ -ray detector's energy (496~531keV) and hit position (back-to-back)

• First observation of Ps-HFS direct transition

Power dependence and transition probability

The events depends on the millimeter-wave power.

Dependency on millimeter power is confirmed S/N [%] 6 5 4 3 2 0 -1 -2 2 6 8 10 12 0 4 P_{acc} [kW]

Obtained transition rate A = $3.1^{+1.6}_{-1.2} \times 10^{-8}$ [s⁻¹] is consistent with the theoretical value 3.37×10^{-8} [s⁻¹]

Future prospects

- Within one year, the direct measurement of Ps-HFS will be firstly performed with accuracy of O(100) ppm.
 - The transition measurement for each one frequency point takes about one month.

Summary

- Direct measurement of Ps HFS (203.4GHz) is interesting, because
 - New method to measure HFS can be a way to solve PS-HFS discrepancy
 - Millimeter wave can be a new eye for basic science
- A direct transition from o-Ps to p-Ps is firstly observed with a gyrotron and a Fabry-Pérot cavity
- We will directly measure Ps-HFS value in about a year for the first time