Search for Hidden Photon Dark Matter(HPDM) using Dish Antenna in Millimeter-wave region

Yoshiki Okesaku¹

T. Yamazaki², S. Knirck³, T. Inada², T. Idehara⁴

¹Graduate School of Science, The University of Tokyo(UTokyo) ²International Center for Elementary Particle Physics(ICEPP), UTokyo ³Institute for Theoretical Physics, University of Heidelberg ⁴Research Center for Development of Far-Infrared Region, University of Fukui

> Light Driven Nuclear-Particle physics and Cosmology 2017 21(Fri.) April, 2017 Pacifico-Yokohama

Hidden Photon Dark Matter(HPDM)

 Hidden Photon: extra U(1) gauge boson predicted in beyond the Standard Model

 HP can be Cold Dark Matter(CDM) via misalignment mechanism

Search region

Method ①

- Strength $\vec{E}_{HP} = \chi m_{\gamma}, \vec{X}$
- By kinetic mixing, HP can have ordinary EM filed $\vec{E}_{HP} = \chi m_{\gamma'} \vec{X} \leftarrow$ HP vector field
- \vec{E}_{HP} oscillates free electrons in conductor, they emits converted light
- Converted light released perpendicular to the conductor surface due to boundary condition
- Energy of Converted light = mass of HP

 $\forall \gamma'$ HP $\int \beta \sim 10^{-3}$ conductor Converted light (ordinary EM wave) 4

Method 2

 Focus converted light with a parabolic mirror, measure power spectrum

 $m_{\nu \prime}$

χ

Parabolic mirror

A_{dish}

5

 $\begin{array}{ll} \mathsf{Frequency of signal} & \rightarrow \\ \mathsf{Power of signal} & \rightarrow \end{array}$

Experiment Setup 2

Corrugate Horn

(Coupling with condensed signal ~ -2dB)

- SBD mixes millimeter-wave(f_{RF}) with local oscillator signal(f_{L0}), downconverts to f_{IF}(conversion loss ~ -40dB)
- Amplify SBD output(~36dB×2, total gain: ~ 72dB)
- After amplified, FFT by oscilloscope (region: 0~4GHz)

Status of Data Acquisition

- Data acquisition: from end of Dec. 2016 to end of Mar. 2017
 - Need to measure wide range (155~220GHz) \checkmark Change f_{L0} 20.00, 20.25,...,27.25GHz

➢On/off measurement

Move SBD on/off focal point of parabolic mirror

→Signal & BG spectrum

Peak Search

• HPDM signal reflects its velocity distribution(Maxwell-Boltzman dist.) $F(\omega) =$

$$P_{0}\theta(\omega - m_{\gamma'}) \times 2\sqrt{\frac{\omega - m_{\gamma'}}{\pi}} \omega_{0}^{-\frac{3}{2}} \exp\left(-\frac{\omega - m_{\gamma'}}{\omega_{0}}\right) + a\omega^{2} + b\omega + y_{0}$$

$$P_{0}: \text{Power of HPDM signal}$$

$$\theta: \text{Step function} \qquad \text{power}$$
BG

 ω_0 : dispartion const. ($m_{\gamma'} \times 4e-7$)

(Calculate from standard Halo model velocity dist. of HPDM) $m_{\gamma'}$: mass of HPDM Peak search for each $m_{\gamma'}$ using $F(\omega)$

(P_0 , a,b, y_0 :fitting parameters)

Limit to HPDM

 Parameter P₀ is power detected by oscilloscope. Convert into power of converted light(P_{hp}) coming from conversion plate

11

(SBD conversion loss, gain of amp., are measured. Horn coupling is calculated from expected focused light)

$$P_{hp} \pm \Delta P_{hp} = \frac{P_0 \pm \Delta P_0}{ConversionLoss \times Gain \times Coupling}$$

• Calculate upper limit(95%C.L.) of P_{hp} from $P_{hp} \pm \Delta P_{hp}$

• $\chi_{95\%CL} =$

$$4.5 \times 10^{-14} \left(\frac{P_{hp95\%}}{10^{-23}W} \times \frac{1m^2}{A_{dish}} \times \frac{0.3 \text{GeV/cm}^3}{\rho_{DM}} \right)_{=1}^{\frac{1}{2}}$$

Expected Result

• Calculate the reaching sensitivity with all 3-month data

• Analysis in progress: New result will come out soon.

Future plan

SIS mixer

 Conversion Loss ~ -10dB
 Thermal noise
 1/1000 of SBD
 2 order high sensitive
 search is possible!

Summary

- 1. Search for Hidden Photon Dark Matter predicted in beyond Standard Model
- Combine Dish antenna method with millimeter-wave technology, HPDM of mass 0.6~0.9 meV can be searched
- 3. We already have finished taking 3 month data, and data analysis is in progress. Sensitive to unsearched $m_{\gamma'} = 0.6 \sim 0.9$ meV region
- 4. For future improvement, using low conversion loss and low noise SIS mixer, 2 orders of magnitude higher sensitivity search is possible