オルソポジトロニウム崩壊における ガンマ線スペクトル測定

大和田健太、森永真央、難波俊雄^A、浅井祥仁、小林富雄^A 東京大学理学系研究科、東京大学素粒子物理国際研究センター^A

> 第48回 アイソトープ・放射線研究発表会 日本科学未来館

1.ポジトロニウム (Ps)

• 電子(e⁻)と陽電子(e⁺)の 束縛系

 \overline{S} = 1 (スピン三重項)

オルソポジトロニウム(o-Ps)

スピン=1 光子と同じ量子数

o-Ps \rightarrow 3 γ (, 5 γ , ...)

連続スペクトル

S = 0 (スピン一重項)

スピン一重項) p-Ps

パラポジトロニウム (p-Ps)

スピン=0 スカラー粒子

p-Ps \rightarrow 2 γ (, 4 γ , ...)

511 keV 単色

基底状態における2つのスピン固有状態間のエネルギー差 =超微細構造(HFS)²

1.2 HFSのずれと未知粒子の可能性

PsのHFSの値は 実験と理論で乖離している。

→未知粒子が存在する可能性

Ex) 未知粒子の質量が数MeV $\rightarrow \alpha_x \sim 10^{-6}$

未知粒子が存在した場合、 HFSに影響を与えるだけでなく、 o-Psの崩壊におけるエネルギー スペクトルがずれてくる。

o-Ps→3γのエネルギースペクトルは未だ直接測定されていない

➡ エネルギースペクトルの精密測定によって未知粒子を探索する

2.o-Psの崩壊における未知粒子探索

短寿命の未知粒子X 弱い制限しかついていない

質量が

O(MeV)→スペクトル全体がゆがむ

O(keV)→スペクトルの一部がゆがむ

Ex.)未知粒子Xの質量~200keVだった場合、 491keV辺りがずれる。

Γ(o-Ps→Xγ)/Γ(o-Ps→3γ)>10⁻⁵の場合、 491keVは0.1%程度ずれる。

1keV当たりの統計誤差を0.1%以下におさえた精密測定をする

3.1検出器(コンセプト)

エネルギースペクトルを精密測定するために、 分解能の良い半導体Ge検出器を用いる

コンプトン散乱を抑制する為に、Ge検出器の周りをveto検出器で囲み、veto検出器でエネルギーを落としたイベントをvetoする

3.2γ線検出器(Ge)

液体窒素タンク

Ge検出器: φ60.3×67.4mm

型番: 28-TP10096

Ge検出器でのエネルギー分解能(FWHM)

エネルギー分解能

FWHM=2.78keV @ 511keV

1.83keV @ 662keV

2.47keV @ 1275keV

511keVのγ線はe+e-の対消滅によって生成 →e-のfermi motionにより分解能が高くでる

3.3 Ps アセンブリー

- ²²Na(380kBq)線源でβ+を生成する。
- プラスチックシンチレータでβ+をタグし、 Psの生成時間を求める。

Ge検出器とdelayed coincidenceをとり、o-Psのeventを選択する

- エアロゲル中でo-Ps を生成
- 線源周りは物質を少なくして、ライトガイドで 左右のPMTまでのばす
- 2つのPMTでcoincidenceをとる事により、 β+を確実にタグする。

線源周りの断面図

線源周りの写真(上図を下から見た図)

3.4 エレクトロニクス

4.1 compton vetoのパフォーマンス

¹³⁷Csを使い、662keV単色光に対してvetoによりどれだけコンプトン散乱を抑制出来るかテストした

Cslに100keV以上エネルギーがあったらvetoをした。

Ge検出器のエネルギースペクトル

光電吸収(660keV~664keV): コンプトン散乱(50keV~659keV)

= 1:2.67 vetoなし

= 1:0.87 vetoあり

Vetoにより、コンプトン散乱を 1/3に抑制できる

4.2 vetoしきれないイベント

Geant4でvetoしきれないイベントを調べた

Vetoしきれなかったイベントの詳細

前方散乱	後方散乱	Ge検出器内の物質で energy deposit	CsIで100keV以下の energy deposit
6.0%	5.8%	80.6%	7.5%

多くがGe検出器内の物質によるもの。 これ以上veto性能をあげることは難しい。

• Vetoしきれないイベントの例(Ge検出器の不感層でenergy deposit)

5.1予備測定(Timing)

1週間ほど測定を行った

Geのtimingを求める方法

信号の立ち上がりが遅いイベントをcut

5.2予備測定(energy)

- タイミングスペクトルは360keV~507keVでenergy cut
- Delayed coincidence : 100ns ~ 400ns
- エネルギースペクトルはCsIに100keV以上のエネルギーがあった
 イベントをveto
 2y成分

寿命(暫定):125+/-0.8ns

o-Psの検出rate <u>7Hz</u>

約1年のrunで精密測定できる

5.3 引き戻し

• 測定されるスペクトルは、検出器のresponseがかかってしまう。

- →検出器のresponseがかかったスペクトルから、本来のスペクトルに引き戻す必要がある
- →現在シミュレーションによって求めた応答関数を用いての引き戻しを開発中

まとめ

• PsのHFSのずれは未知粒子の存在によって説明することができ、エネルギースペクトルを測定することによって、 $10^{-5}\Gamma_{3\gamma}$ の感度で検証できる

• Ge検出器を用いて、周りのCslでvetoをかけることによって、コンプトン散乱を通常の1/3に抑制できる。

• 予備測定のパフォーマンスなら、約1年程度のrunで 測定出来る。