

Ti-coated $(12.7\mu m)$)

Probing the Energy Structure of Positronium with a 203 GHz Fabry-Perot Cavity

Radiation power up to ~kW (ours: 200W) Narrow line width (10 kHz level) Moderate frequency tuning (~ GHz)

Good for the HFS observation!

Gyrotron FU CW V developed in Fukui Univ. dedicated for the HFS study.

Schematic of gyrotrons. t utilizes cycrotron motion of electrons to cause resonance at the center cavity.

Basic ideas

²² Na positron source (1MBq) at 25 mm from the center of the c	avity.
Timing of the positron emission is by a plastic scintillator (100 μm th	s tagged ick).
Positrons stop and form positroni by scattering with N ₂ gas in the ca (isobutane is added to reduce slow)	ums avity w positrons).
Part of positrons which do not stop in the cavity are vetoed by surrounded veto plastic scintillators.	
Positronium decays in the cavity (τ =138ns), emitting photons (3 γ : o-Ps, 2 γ : p-Ps with HFS transition).	
 Emitted photons are observed by LaBr₃ crystal scintillators (~3% energy resolution, fast rise time). Separate 2γ (511 keV, monchromatic) and 3γ (< 511 keV, continuum) events by energy. 	
Separate prompt events by the timir	ng difference.
ed optimization is ongo te-Carlo simulation pac	ing with kage (Geant4)
S/N is not g observation current geo performance and the gyr	ood, but is possible in the metry if target e of the cavity otron are acchieved.

A simulation result of the positron position [mm] stopping position in 1 atm N_2 .

Fabry-Perot cavity: an optical resonator with two face-to-face mirrors.

Two important characteristics of the cavity:

Input coupling If the coupling is not appropriate, large part of the power is lost by reflection or diffraction.

• Estimated by reflection at the resonance (critical coupling: R=0) or measuring absolute power at the output resonance monitor.

Condition of proper input coupling: Matched coupling strength

- to Finesse of the cavity. Small transmission loss Field shape at the input
- similar to the cavity mode

We use a **metal-mesh mirror** for the input mirror and a **Cu concave mirror** for the opposite side.

Setup for the cavity test. (Geometry is almost the same as the left drawing).

\mathcal{F} > 630 is obtained.

Round-trip reflectivity > 99% - OK.

Now performing detailed optimization of the cavity.

Increase input coupling. less ohmic/diffraction loss.

The first observation of direct HFS transition will be in this fall, leading to precise HFS measurements to investigate the HFS puzzle.

THz light is a rapidly developing field. We are searching other applications for the fundamental physics.