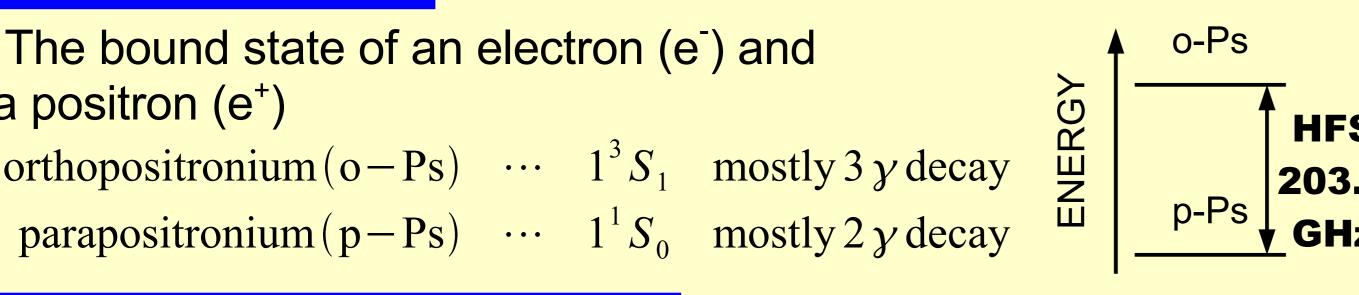
Precise measurement of HFS of positronium

A. Ishida*, G. Akimoto*, K. Kato*, T. Suehara*, T. Namba*, S. Asai*, T. Kobayashi*, H. Saito[†], M. Yoshida**, K. Tanaka**, A. Yamamoto**, I. Ogawa[‡], S. Kobayashi[‡] and T. Idehara[‡]


*Department of Physics and ICEPP, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan [†]Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan **High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, İbaraki, 305-0801, Japan

[‡]FIR Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan

Positronium and its hyperfine structure (HFS)

Positronium (Ps)

The bound state of an electron (e⁻) and a positron (e⁺) orthopositronium (o-Ps) ··· 1^3S_1 mostly 3γ decay

Hyperfine structure (HFS)

- The energy splitting between o-Ps and p-Ps

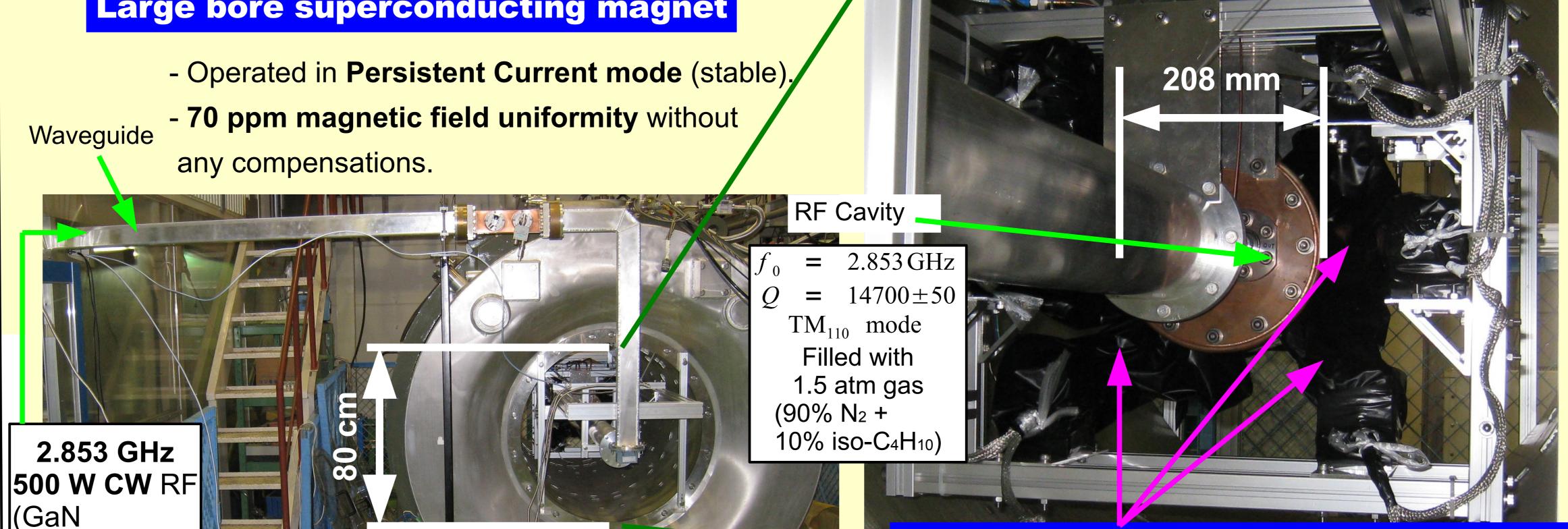
- The value of HFS Experimental average Mills et al., 1983 203.388 65(67) GHz (3.3 ppm) PRA 27, 262 (1983) PRA 30, 1331 (1984) **Theory 203.391 69**(41) GHz (2.0 ppm) PRL. 85, 5094 (2000)

- The measured values are consistent with each other and lower than the theoretical calculation.

15 ppm (3.9 σ) discrepancy

 \rightarrow 2 γ decay rate increases.

 $|+> (m_z=0)$

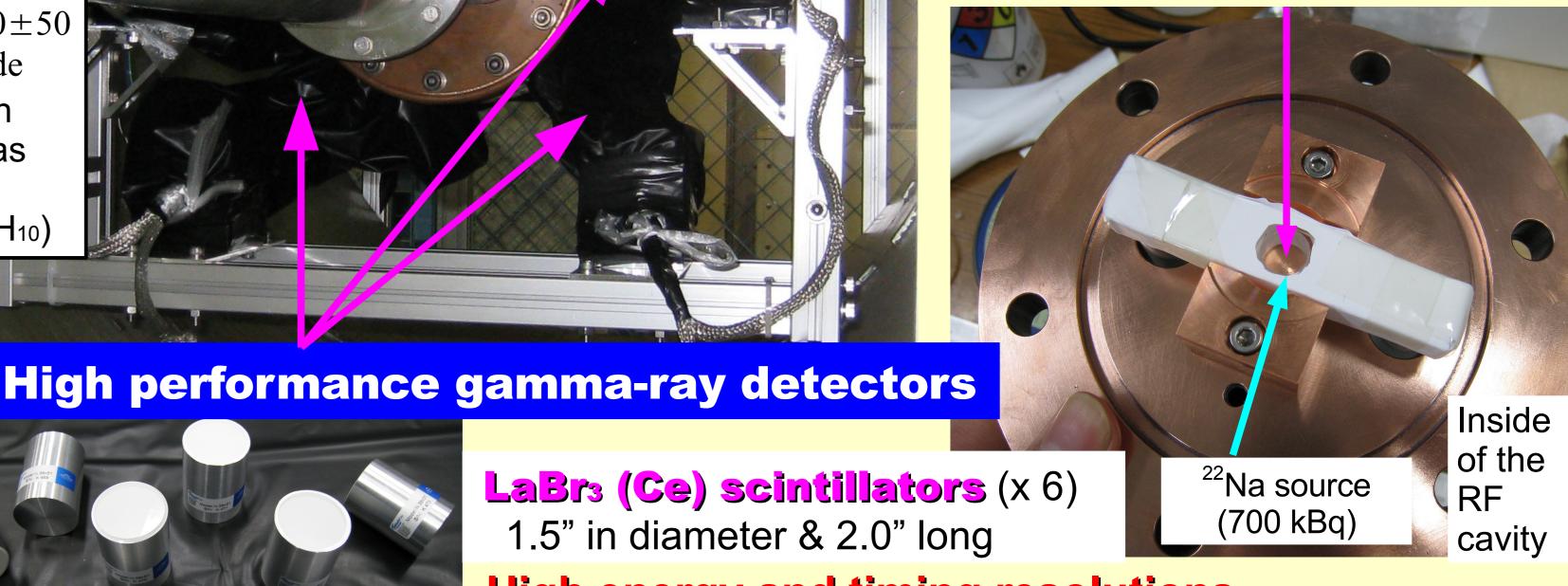

H[kG]

 Δ_{mix}

Experimental setup

To reduce these systematic uncertainties, we use the following new methods.

Large bore superconducting magnet



Time information

- Plastic scintillator is used to tag emitted β⁺.

- Get the time information between o-Ps creation (t = 0) and decay.
- (1) We can measure the thermalization.
- (2) Prompt suppression

0.2 mm thick, 15 mm x 15 mm Plastic Scintillator

LaBr3 (Ce) scintillators (x 6) 1.5" in diameter & 2.0" long

High energy and timing resolutions, short decay constant

Measurement using the Zeeman effect Induce the transition

How to measure the HFS?

- In a static magnetic field, energy levels of o-Ps split between $m_z = 0$ and $m_z = \pm 1$ states. (Zeeman Effect)

- At about 9 kG, Δ_{mix} is
- The HFS value is calculated
- → See T. Suehara's poster.

$|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$ $(m_z=\pm 1)$ about 3 GHz (microwave). $\Delta_{ ext{HFS}}$ from Δ_{mix} . (indirect measurement) E_{p-Ps} - What about direct measurement? $|-> (m_z=0)$ Common systematic uncertainties

1. Underestimation of material effects

in the previous experiments

- Unthermalized o-Ps can have a significant effect (especially at low material density). ← o-Ps lifetime puzzle (1990's)

2. Non-uniformity of the magnetic field

- It's quite difficult to get ppm level uniform field in a large Ps creation volume

Current status

Preliminary plots

Amplifier)

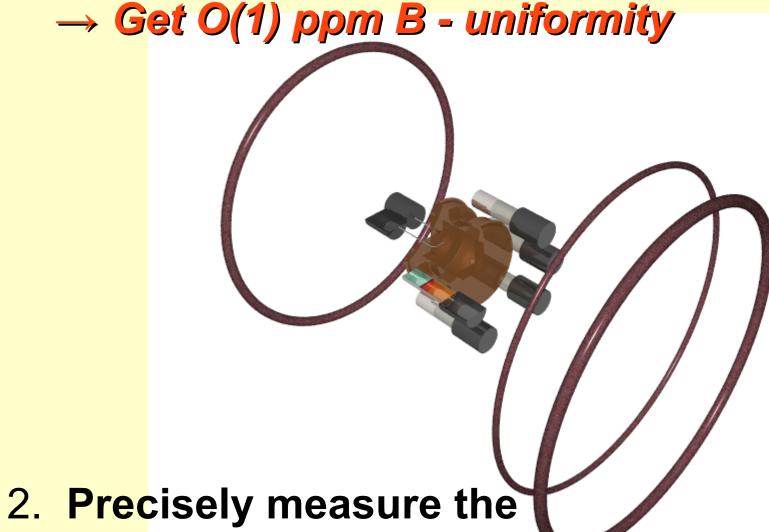
We are presently taking more data....

TIMING SPECTRA RESONANCE CURVE ENERGY SPECTRA 0.8658 T RF 450 W 0.8656 ± 9.862e-06 0.8614 T RF 450 W 0.02 0.8658 T RF 450 W ₹ 0.6 ---- RF OFF 492 -- 530 keV ENERGY WINDOW 0.8614 T RF 450 W **占** 0.015 Preliminary (700 -- 900 ns ACCIDENTAL SUBTRACTED) Preliminary Preliminary **j** 0.005 0.862 0.863 0.864 0.865 0.866 0.867 0.868 0.869 **MAGNETIC FIELD (T) ENERGY** (keV)

2 y decay rate increases because of the transition between o-Ps' $m_z = 0$ and $m_z = \pm 1$ states.

Constant 2.438e-06 ± 2.689e-08 $0.003855 \pm 2.531e-05$

Converted HFS value (from an only 2 weeks run) is 203.399


- ± 0.005 (23 ppm, stat.)
- ± 0.029 (140 ppm, sys.) GHz (Preliminary)

(consistent with the previous experiments) The systematic error mainly comes from the non-uniformity of the magnetic field.

Our goal

O(1) ppm accuracy in a year

- Develop compensation coils

- thermalization function.
- 3. Derive the HFS value at O(1) ppm accuracy.
 - → Solve or Confirm the discrepancy between the experimental values and the theoretical value.