Search for Vacuum Diffraction Using X-ray Free Electron Laser
SACLAV

Yudai Seino
University of Tokyo, ICEPPA,
RIKEN SPring-8B, JASRI
10/01/2017
Vacuum diffraction caused by the reflective index slope of vacuum

QED predicts that a refractive index of the vacuum changes from 1 under a strong electromagnetic field.

ex) Under a magnetic field \(n = 1 + 9 \times 10^{-24} B^2 \), B [T]

~When there is an ununiform electromagnetic field in the vacuum~
→An electromagnetic field makes a slope of a refractive index in the vacuum!!
→Photons transversing the vacuum could be diffracted slightly.

Ununiform strong electromagnetic field
A key point is to make this field.
→We use a high power laser.
Vacuum diffraction with high power laser

- We use a high power pulsed laser to pump the vacuum.
- A strong electromagnetic field is made by focused laser.

Vacuum Diffraction and Vacuum Birefringence are properties of the vacuum.

VD experiment
- **Effect**: Momentum change of light
- **Pump**: High power laser (10^6T)
- **Probe**: X-ray laser (next slide)

VB experiment (previous talk)
- **Effect**: Polarization change of light
- **Pump**: Strong magnet (20T)
- **Probe**: Usual laser
Angle distribution of vacuum diffraction

Angle distribution of **Diffracted light** at collision point

\[
\frac{dN_{\text{diffracted}}}{d \cos \theta} \sim \frac{E^2 J W^2}{w_L^2 (w_L^2 + 2w_X^2)} E^2 w^2 e^{-\frac{1}{2}(Ew\theta)^2}
\]

\[w^2 = \frac{w_L^2 w_X^2}{w_L^2 + 2w_X^2}\]

Probe light

High energy & pulsed laser is good.

→ **Pulsed X-ray laser**

Probe X-ray laser (Gaussian beam)

- Photon number: \(N\)
- Photon flux: \(J\)
- Photon energy: \(E\)
- Beam waist: \(w_X\)

Pump laser

- Pulse energy: \(W\)
- Beam waist: \(w_L\)

Angle from collision point: \(\theta\)

Probe X-ray laser + Diffracted light
Angle distribution of vacuum diffraction

Angle distribution of **Diffracted light** at collision point

\[\frac{dN_{\text{diffracted}}}{d \cos \theta} \sim \frac{E^2 J W^2}{w_L^2 (w_L^2 + 2w_X^2)} E^2 w^2 e^{-\frac{1}{2}(Ew\theta)^2} \]

\[w^2 = \frac{w_L^2 w_X^2}{w_L^2 + 2w_X^2} \]

Probe laser energy \(E : 10 \text{ keV} \)

Probe laser beam waist \(w_X : 2 \mu \text{m} \)

Pump laser beam waist \(w_L : 1 \mu \text{m} \)

Probe X-ray laser
- (Gaussian beam)
- Photon number : \(N \)
- Photon flux : \(J \)
- Photon energy : \(E \)
- Beam waist : \(w_X \)

Pump laser
- Pulse energy : \(W \)
- Beam waist : \(w_L \)

Angle from collision point : \(\theta \)

Probe X-ray laser + **Diffracted light**
Angle distribution of vacuum diffraction

Angle distribution of **Diffracted light at collision point**

$$\frac{dN_{\text{diffracted}}}{d \cos \theta} \sim \frac{E^2 J W^2}{w_L^2 (w_L^2 + 2w_X^2)} E^2 w^2 e^{-\frac{1}{2} (Ew\theta)^2}$$

$$w^2 = \frac{w_L^2 w_X^2}{w_L^2 + 2w_X^2}$$

PRD 92, 071301(R) (2015)

Probe X-ray laser
- (Gaussian beam)
- Photon number: N
- Photon flux: J
- Photon energy: E
- Beam waist: w_X

Pump laser
- Pulse energy: W
- Beam waist: w_L

Diffraction light
- Angle from collision point: θ
- **Probe X-ray laser**
 - $(1\sigma \ 10 \ \mu\text{rad})$
- **Diffracted light**
 - $(1\sigma \ 30 \ \mu\text{rad})$

E : 10 keV
w_X : 2 μm
w_L : 1 μm

Angle distribution of Diffracted light at collision point
X-ray Free Electron Laser (XFEL) facility SACLA

Probe
We use an **XFEL** of SACLA. XFEL is X-ray laser.

Performance of the XFEL
- Photon number : 5×10^{11} photons/pulse @ 10 keV
- Pulse width : <10 fs

Pump
We can use a high power laser with XFEL at SACLA. We can already use a **2.5 TW laser** and a **500 TW laser** is under installation.

Performance of the 500 TW laser
- Wave length : 800 nm
- Pulse energy : 12.5 J
- Pulse width : 25 fs
- rate : 1 Hz
The **2.5 TW laser** is focused to 10 µm.
Setup of test experiment

①The **2.5 TW laser** is focused to 10 µm.

②The **focused XFEL pulse** and the **2.5 TW laser pulse** collide each other at the focal point.
Setup of test experiment

1. The **2.5 TW laser** is focused to 10 µm.
2. The **focused XFEL pulse** and the **2.5 TW laser pulse** collide each other at the focal point.
3. We put the slits to shut out **X rays** which enter to the detector and to detect only diffracted **signal light**. (~30 µrad)
We made the vacuum diffraction experiment at SACLA in November 2016.

Beam time: 2.5 days
Parameters: Probe XFEL : 9.8 keV, Pump laser : 2.5 TW
Experiment in November 2016

We made the vacuum diffraction experiment at SACLA in November 2016.

Beam time: 2.5 days

Parameters:
- Probe XFEL: 9.8 keV
- Pump laser: 2.5 TW

Image showing a vacuum chamber with labeled parts: Probe XFEL, Pump laser, OAP, and collision point.
Important points of VD experiment

- Size of the pump laser and the probe XFEL
- Space and timing guarantee of the collision
- BG suppression
Pump laser and probe XFEL size

Pump laser image of CCD camera
Low power (~nJ)

Beam waist : 12 µm
→ Enough size as first step experiment
We used Zn film to check the collision of the pump laser and the probe XFEL. A hole made by the probe XFEL and a crater made by the pump laser were used to guarantee the collision.

How to check the collision
1. Zn thin film (20 µm) was set at the collision point and irradiated the pump laser and the probe XFEL.
2. Zn thin film was checked by a laser microscope after the experiment.
How to check the collision

1. Zn thin film (20 µm) was set at the collision point and irradiated the pump laser and the probe XFEL.
2. Zn thin film was checked by a laser microscope after the experiment.
Spacial guarantee

How to check the collision
1. Zn thin film (20 µm) was set at the collision point and irradiated the pump laser and the probe XFEL.
2. Zn thin film was checked by a laser microscope after the experiment.

The crater on the Zn film. This is fitted by 2D Gaussian

Same laser microscope image
z axis : height

Center of laser
Center of XFEL
Spacial guarantee

How to check the collision

1. Zn thin film (20 µm) was set at the collision point and irradiated the pump laser and the probe XFEL.
2. Zn thin film was checked by a laser microscope after the experiment.

Distance from the XFEL center to the laser center: 12 µm (V)
Laser beam waist: 12 µm
XFEL beam size: 20×40 µm (V×H)

→ The laser and the XFEL collided partially!
Timing guarantee

To check the collision timing, we use a GaAs thin film. If the probe XFEL is irradiated to the GaAs, charge carrier density of GaAs increase and a opacity changes. Hence, when the pump laser and the probe XFEL are irradiated at same timing, the pump laser transmittance changes (decreases).

A requirement of timing: ±3 ps
The timing uncertainty: ±2 ps
→ Timing guarantee is enough!

- Falling time 4ps
- The same timing!

Laser transmittance [a.u.]
Laser timing [ps]
We tuned the position of slit3 for the BG suppression.
1. Slit1,2,4 were set.
2. Knife edge scan by slit3.
3. Slit3 was set.
BG suppression

We took Main Run and BG Run data.
(Repetition frequency of the probe XFEL is 30 Hz and the pump laser is 10 Hz)

Main DAQ (10 Hz) : XFEL with the laser. $\rightarrow 2.93 \times 10^6$ photons/pulse
BG DAQ (20 Hz) : XFEL without the laser. $\rightarrow 2.94 \times 10^6$ photons/pulse
(X rays at the collision point is 3×10^{10} photons/pulse)

Finally we subtracted photon counts of BG DAQ from Main DAQ.
Result of BG suppression was 10^{-6}.
(10$^{-16}$ suppression is required for final step experiment)

Final Result
I am calculating a sensitivity of the test experiment.
I will present about the result at the JPS in March 2017.
Future plan

VD experiment with the small focused laser and the XFEL (2017)
- Laser beam waist 1 µm
- XFEL beam waist 2 µm

BG study at SPring-8 (2017)
We do not understand the source of BG now.
SPring-8 : Synchrotron radiation facility
Steady X-ray beam

VD experiment using 500 TW laser (2018)
- 500 TW laser & beam waist 1 µm
- The probe XFEL beam waist 2 µm
- 1 day DAQ

Reach QED theoretical value.
First observation of vacuum diffraction!!
Summary

- QED predicts that a strong electromagnetic field changes a refractive index of the vacuum. Photons transversing an ununiform electromagnetic field could be diffracted.

- We use a high power laser to make a strong electromagnetic field.
- XFEL is used as probe beam.

- We made the vacuum diffraction experiment in November 2016, but the sensitivity was not enough to reach QED theoretical value.

- We will make the vacuum diffraction experiment using the 500 TW laser. It will be the first observation of vacuum diffraction.