Search for Vacuum Diffraction Using X-ray Free Electron Laser SACLA

Yudai Seino

T. Yamazaki^A, T. Inada^A, T. Namba^A, S. Asai, T. Yabuuchi^B, T. Togashi^{BC}, Y. Inubushi^{BC}, K. Tamasaku^B, M. Yabashi^{BC}, T. Ishikawa^B

University of Tokyo, ICEPP^A, RIKEN SPring-8^B, JASRI^C 10/01/2017

FPUA 10/01/2017

Vacuum diffraction

caused by the reflective index slope of vacuum

QED predicts that a refractive index of the vacuum changes from 1 under a strong electromagnetic field.

ex) Under a magnetic field $n = 1 + 9 \times 10^{-24} B^2$, B [T]

This effect has not been observed!

~When there is an ununiform electromagnetic field in the vacuum~

 \rightarrow An electromagnetic field makes a slope of a refractive index in the vacuum!! \rightarrow Photons transversing the vacuum could be diffracted slightly.

Vacuum diffraction with high power laser

We use a high power pulsed laser to pump the vacuum.
A strong electromagnetic field is made by focused laser.

Vacuum Diffraction and Vacuum Birefringence are properties of the vacuum.

VD experiment

Effect : Momentum change of light **Pump** : High power laser(10⁶T)

Probe : X-ray laser(next slide)

VB experiment(previous talk) Effect : Polarization change of light Pump : Strong magnet(20T) Probe : Usual laser

Angle distribution of vacuum diffraction

Angle distribution of **Diffracted light** at collision point

Angle distribution of vacuum diffraction

Angle distribution of **Diffracted light** at collision point

Angle distribution of vacuum diffraction

X-ray Free Electron Laser(XFEL) facility SACLA

Probe

We use an **XFEL** of SACLA. XFEL is X-ray laser.

Performance of the XFEL

- Photon number $\therefore 5 \times 10^{11}$ photons/pulse @10 keV
- ∶<10 fs • Pulse width

<u>Pump</u>

We can use a high power laser with XFEL at SACLA We can already use a 2.5 TW laser and a 500 TW laser is under installation.

Performance of the 500 TW laser

- Wave length : 800 nm
- Pulse energy : 12.5 J
- Pulse width : 25 fs
- rate

500 TW laser FPUA 10/01/2017

:1 Hz

Setup of test experiment

(1) The **2.5 TW laser** is focused to 10 μ m.

Setup of test experiment

(1) The **2.5 TW laser** is focused to 10 μ m.

(2) The **focused XFEL pulse** and the **2.5 TW laser pulse** collide each other at the focal point.

Setup of test experiment

(1) The **2.5 TW laser** is focused to 10 μ m.

(2) The focused XFEL pulse and the 2.5 TW laser pulse collide each other

at the focal point.

③We put the slits to shut out X rays which enter to the detector and to detect only

diffracted signal light.(~30 µrad)

Experiment in November 2016

We made the vacuum diffraction experiment at SACLA in November 2016.

Beam time : 2.5 days

Parameters : Probe XFEL : 9.8 keV, Pump laser : 2.5 TW

Experiment in November 2016

We made the vacuum diffraction experiment at SACLA in November 2016. **Beam time** : 2.5 days **Parameters** : Probe XFEL : 9.8 keV, Pump laser : 2.5 TW

Important points of VD experiment

 \cdot Size of the pump laser and the probe XFEL

Space and timing guarantee of the collision

BG suppression

Pump laser and probe XFEL size

Pump laser image of CCD camera

Low power (~nJ)

Beam waist : $12 \mu m$ →Enough size as first step experiment

We used Zn film to check the collision of the pump laser and the probe XFEL. A hole made by the probe XFEL and a crater made by the pump laser were used to guarantee the collision.

- 1. Zn thin film(20 μm) was set at the collision point and irradiated the pump laser and the probe XFEL.
- 2. Zn thin film was checked by a laser microscope after the experiment.

- 1. Zn thin film(20 µm) was set at the collision point and irradiated the pump laser and the probe XFEL.
- 2. Zn thin film was checked by a laser microscope after the experiment.

- 1. Zn thin film(20 µm) was set at the collision point and irradiated the pump laser and the probe XFEL.
- 2. Zn thin film was checked by a laser microscope after the experiment.

- 1. Zn thin film(20 µm) was set at the collision point and irradiated the pump laser and the probe XFEL.
- 2. Zn thin film was checked by a laser microscope after the experiment.

Timing guarantee

To check the collision timing, we use a GaAs thin film.

If the probe XFEL is irradiated to the GaAs, charge carrier density of GaAs increase and a opacity changes.

Hence, when the pump laser and the probe XFEL are irradiated at same timing, the pump laser transmittance changes(**decreases**).

BG suppression

FPUA 10/01/2017

20

BG suppression

We took Main Run and BG Run data.

(Repetition frequency of the probe XFEL is 30 Hz and the pump laser is 10 Hz)

Main DAQ (10 Hz) : XFEL with the laser. $\longrightarrow 2.93 \times 10^6$ photons/pulse **BG DAQ** (20 Hz) : XFEL without the laser. $\longrightarrow 2.94 \times 10^6$ photons/pulse (X rays at the collision point is 3×10^{10} photons/pulse)

Finally we subtracted photon counts of BG DAQ from Main DAQ. Result of BG suppression was **10**⁻⁶. (10⁻¹⁶ suppression is required for final step experiment)

Final Result

I am calculating a sensitivity of the test experiment. I will present about the result at the JPS in March 2017.

Future plan

VD experiment with the small focused laser and the XFEL(2017)

- Laser beam waist 1 µm
- XFEL beam waist 2 µm

BG study at SPring-8(2017)

We do not understand the source of BG now. SPring-8 : Synchrotron radiation facility Steady X-ray beam

VD experiment using 500 TW laser(2018)

- 500 TW laser & beam waist 1 μm
- The probe XFEL beam waist 2 μm
- 1 day DAQ

Reach QED theoretical value.

First observation of vacuum diffraction!!

Summary

- QED predicts that a strong electromagnetic field changes a refractive index of the vacuum. Photons transversing an ununiform electromagnetic field could be diffracted.
- We use a high power laser to make a strong electromagnetic field.
- XFEL is used as probe beam.
- We made the vacuum diffraction experiment in November 2016, but the sensitivity was not enough to reach QED theoretical value.
- We will make the vacuum diffraction experiment using the 500 TW laser. It will be the first observation of vacuum diffraction.