Search for Vacuum Diffraction Using high power laser and X-ray Free Electron Laser SACLA

Yudai Seino¹

T. Yamazaki², T. Inada², T. Namba², S. Asai¹, T. Yabuuchi³, T. Togashi³⁴, Y. Inubushi³⁴, K. Tamasaku³, M. Yabashi³⁴, T. Ishikawa³

University of Tokyo¹, ICEPP², RIKEN SPring-8³, JASRI⁴ 21/04/2017

Vacuum diffraction caused by a nonuniform polarization of vacuum

QED predicts that a refractive index of the vacuum changes from 1 under a strong electromagnetic field.

ex) Under a magnetic field $n = 1 + 9 \times 10^{-24} B^2$, B [T]

In the vacuum

light

This effect has not been observed!

~When there is a nonuniform electromagnetic field in the vacuum~

- \rightarrow An electromagnetic field makes a nonuniform polarization.
- \rightarrow Photons transversing the vacuum could be diffracted slightly.

→Vacuum diffraction

Nonuniform strong electromagnetic field

A key point is to make this field.

 \rightarrow We use a high power laser.

Vacuum diffraction with high power laser

We use a high power pulsed laser to pump the vacuum.
 Laser is small focused.

Reasons to use high power laser

- 1. Strong electromagnetic field : ~10⁶ T
- 2. Focal spot makes small nonuniform electromagnetic field : ~1 µm

Anglar distribution of vacuum diffraction

Anglar distribution of **Diffracted light** at collision point

Anglar distribution of vacuum diffraction

Anglar distribution of **Diffracted light** at collision point

Anglar distribution of vacuum diffraction

Anglar distribution of **Diffracted light** at collision point

Anglar distribution of vacuum diffraction Anglar distribution of **Diffracted light** at collision point **Probe X-ray laser** $(1\sigma 10 \mu rad)$ $\frac{\mathrm{d}N_{\mathrm{diffracted}}}{\mathrm{d}\cos\theta} \sim \frac{JE^2W^2}{w_{\mathrm{L}}^2(w_{\mathrm{L}}^2 + 2w_{\mathrm{X}}^2)}$ **Diffracted light** $(1\sigma 30 \mu rad)$ 0.8 $\times (\underline{E}w)^2 e^{-\frac{1}{2}(\underline{E}w\theta)^2}$ 0.6 0.4 $w^{2} = \frac{w_{\rm L}^{2} w_{\rm X}^{2}}{w_{\rm T}^{2} + 2w_{\rm Y}^{2}} -$ E: 10 keV 0.2 w_{X} : 2 μ m PRD 94, 013004 (2016) $w_{ m L}$: 1 $\mu m m}$ 01-100 -80 -60 20 40 -40 -20 0 60 80 100 μrad **Diffracted light Pump laser Probe X-ray laser** (Gaussian beam) **Probe laser** Photon number :NPhoton flux : *J* Photon energy : E**Pump laser** Beam waist : W_X Pulse energy WBeam waist : $w_{ m L}$

X-ray Free Electron Laser(XFEL) facility SACLA

We can use XFEL and high power laser at SACLA !

Probe

We use an **XFEL** of SACLA. XFEL is X-ray laser.

Performance of the XFEL

- Photon number $: 3 \times 10^{11}$ photons/pulse @10 keV
- Pulse width \therefore <10 fs
- Beam waist 300 µm

1 µm (after focusing)

Pump

We can use a high power laser with XFEL at SACLA. A 500 TW laser is under installation.

Performance of the 500 TW laser

- Wave length : 800 nm
- Pulse energy : 12.5 J
- Pulse width : 25 fs
- Rate
- : 1 Hz

• The 500 TW laser is focused to 1 μm.

- Anglar divergence of the probe XFEL is suppressed by slits and the probe XFEL pulse is focused to 2 μm.
- The focused XFEL pulse and the 500 TW laser pulse collide each other at the focal point.
- The probe XFEL were diffracted.
 Probability : ~10⁻¹³ Angler divergence : ~30 µrad

- We detect only diffracted light by setting slit.
- For 2 days DAQ, signal light reach ~200 photons.

- We detect only diffracted light by setting slit.
- For 2 days DAQ, signal light reach ~200 photons.

We can observe vacuum diffraction.

(If collision and BG suppression is successful)

Requirements for vacuum diffraction observing

Points to get enough signals

- Size of the pump laser and the probe XFEL ~1 μm
- Spacial alignment (absolute position, fluctuation) ~µm
- Timing alignment (absolute timing, jitter)

Back ground suppression

BG are produced by the probe XFEL beam(3×10¹¹ photons/pls)

Target value	Laser	Laser pulse energy	Focused laser size	Spacial precision	Timing precision	BG suppression rate
Final experiment (Observation of VD)	500 TW	12.5 J	1 µm	1 µm	0.3 ps	1 0 ⁻¹⁶

~ps

Requirements for vacuum diffraction observing

Points to get enough signals

- Size of the pump laser and the probe XFEL ~1 μm
- Spacial alignment (absolute position, fluctuation) ~µm
- Timing alignment (absolute timing, jitter)

Back ground suppression

BG are produced by the probe XFEL beam(3×10¹¹ photons/pls)

Target value	Laser	Laser pulse energy	Focused laser size	Spacial precision	Timing precision	BG suppression rate
Final experiment (Observation of VD)	500 TW	12.5 J	1 µm	1 µm	0.3 ps	1 0 ⁻¹⁶
1st step experiment	2.5 TW	0.1 J	10 µm	10 µm	3 ps	10 -16

- We can already use 2.5 TW laser at SACLA.
- Firstly we made test experiment with large laser size(10 µm) to check current techniques for above contents.
- First vacuum diffraction experiment.

~ps

1st step experiment in November 2016

We made a 1st step experiment at SACLA in November 2016.

Beam time : 2.5 days

Parameters : Probe XFEL : 9.8 keV, Pump laser : 2.5 TW

1st step experiment in November 2016

We made a 1st step experiment at SACLA in November 2016.

Beam time : 2.5 days

Parameters : Probe XFEL : 9.8 keV, Pump laser : 2.5 TW

Pump laser and probe XFEL size

Pump laser image of CCD camera

Low power (~nJ)

Beam size of pump laser FWHM : 11 µm (V) →Enough size as 1st step experiment.

Wire scan result of the probe XFEL

To cover the pump laser size, we adjust XFEL size to 20 μm. Beam size of probe XFEL FWHM : 20 μm (V)

Spacial guarantee

Spacial alignment method

Probe XFEL and pump laser are irradiated to a zinc thin film(20 μ m) set at the collision point and both make <u>irradiation traces</u>. We adjust and overlap the position of the irradiation traces using an optical microscope.

LNPC 21/04/2017

Spacial guarantee

Spacial alignment method

Probe XFEL and pump laser are irradiated to a zinc thin film(20 µm) set at the collision point and both make irradiation traces. We adjust and overlap the position of the irradiation traces using an optical microscope.

Timing guarantee

Timing alignment method

- 1. GaAs film was put at collision point and XFEL and the pump laser are irradiated.
- 2. We applied optical delay to the pump laser and monitored laser transmittance by CCD camera.

Timing guarantee

Timing alignment method

- 1. GaAs film was put at collision point and XFEL and the pump laser are irradiated.
- 2. We applied optical delay to the pump laser and monitored laser transmittance by CCD camera.

For BG suppression, we used slits.

Two strategies for BG suppression

- 1. Suppression of probe XFEL angular divergence by Slit1,2.
- 2. We set a Slit3 in a place to cut x rays scattered by slit2, lens, etc.

Experimental hall

We need to adjust slit $\sim \mu m$ but slit to slit distance is $\sim 10 m$.

Experimental hall

We need to adjust slit $\sim \mu m$ but slit to slit distance is $\sim 10 m$.

Slit2

Slit1

XFEL

3n

X ray le Measured BG suppression rate : 10⁻⁴ (target value : 10⁻¹⁶)

 BG are produced by the probe XFEL beam (3×10¹¹ photons/pulse)

Slit4

- BG study at SPring-8 (May 2017)
 - Understanding of BG source
 - Suppression of x ray flux near slit3

Detector

Result of Nov. test experiment

	Focused laser size	Spacial precision	Timing precision	BG suppression rate
Target value	10 µm	10 µm	3 ps	1 0 ⁻¹⁶
Result	11 µm	4 µm	2 ps	10-4

From this experiment, sensitivity was 4×10^{34} times worse than QED theoretical value. This result is not good but this is first trial for vacuum diffraction.

Future plan

BG study at SPring-8(May 2017)

- Identification of BG source
- Change of slit geometry, BG suppression $10^{-4} \longrightarrow 10^{-16}$

Improvements of following items(2017~)

- Laser : 2.5 TW -> 500 TW
- Focused laser size : 11 μm —> 1 μm
 Introduction of deformable mirror
- Spacial alignment precision : 4 µm —> 1 µm
 Using new metal film or high resolution detector
- Timing alignment precision : 2 ps —> 0.3 ps
 Alignment using Si₃N₄ film

VD experiment using 500 TW laser(2018~)

- 500 TW laser & beam waist 1 µm
- The probe XFEL beam waist 2 μm
- 2 day DAQ

Reach QED theoretical value.

First observation of vacuum diffraction!!

Summary

- QED predicts that a strong electromagnetic field changes a refractive index of the vacuum. Photons transversing a nonuniform electromagnetic field could be diffracted.
- We use a high power laser to make a strong electromagnetic field.
- XFEL is used as probe beam.
- We made the vacuum diffraction experiment in November 2016, but the sensitivity was not enough to reach QED theoretical value.
- We will make the vacuum diffraction experiment using the 500 TW laser. It will be the first observation of vacuum diffraction.