Hidden Particle Search using Sub-THz Gyrotron

Taikan Suehara K. Owada, A. Miyazaki, T. Yamazaki, S. Asai, T. Kobayashi International Center for Elementary Particle Physics & Dept. of Physics, Graduate School of Science, The University of Tokyo

Weakly Interacting Sub-eV Particles (WISPs)

ALP (Axion-like particle)
Axion (pseudo-scalar)
CP problem in QCD
Dilaton (scalar)

Paraphoton (hidden photon):
Extra U(1) Gauge Boson
photon ↔ paraphoton osc.

photon Paraphoton

[Bartlett,..'88; Kumar,..'06; Ahlers,..'07; Jaeckel,..'07; Redondo,..'08;Postma,Redondo '08;Bjorken,Essig,Schuster,Toro'09;...]

Magnified View (~ meV)

Laser LSW sensitive at > 0.5 meV 'pit' at 0.1 meV

meV (THz) photons!

$$P_{\gamma\gamma'} = 16\chi^2 \left(\sin\frac{m_{\gamma'}^2 L}{4\omega}\right)^2$$

LSW with THz photons can cover the 0.1 meV region!

Plan for LSW exp. with THz

- Strong light source in THz
 - Gyrotron with Fabry-Perot cavity
 - Number of photons at the same power is 1000 times larger in THz photons than in visible photons
- Sensitive detector
 - More difficult than visible photons because of lower energy
 - Superconducting detector (SIS etc.)

Gyrotron FU CW GI

- developed in Fukui 201-206 GHz 300 W Gaussian
- with internal mode converter
- line width: ~1MHz (good condition)
- duty up to 50% up to 20 Hz
- assembled for positronium exp. (see Yamazaki's
 - talk on Friday)

Fabry-Perot Cavity

One-dimensional cavity

- high density (optical confinement)
- free cavity length

Maintain resonance by controlling cavity length with a piezo stage (< 100nm resolution)

> 20-30kW accumulated (water cooled silicon)

Au mesh (200µm width, 360µm period, 1µm thick) depleted on quartz or silicon 99% reflection, ~0.7% transmission @ 203 GHz Wollongong, 24 Sep. 2012 page 10

mesh melted at 20KW with quartz

Superconducting Detector

- SIS Heterodyne (phase I)
 - Eliminating background by selecting gyrotron frequency
 - SIS Detector from Nobeyama
 - Nb SIS, 4K operation, noise level: ~ 100K
 - Originally tuned for 230GHz
 - Now testing performance at < 210 GHz
- Direct detection (phase II)
 - Photon counting device will drastically gain sensitivity
 - Candidates: SIS, TES, KIDs
 - Detector speed is essential for photon counting: SIS may be most suitable

Need detector development & improvement

Taikan Suehara et al., IRMMW-THz 2012 @ U. Wollongong, 24 Sep. 2012 page 11

Possible combining existing technologies Now preparing

Setup (phase I)

Phase I (heterodyne): paraphoton only Aim to cover the pit at $m_{\gamma'} \sim 10^{-4}$ eV Phase II (direct): paraphoton & ALP (with strong magnet) ~ 10 times lower limits for paraphoton

Summary

- Hidden particle search with THz wave
 - World highest sensitivity for ~0.1 meV paraphoton
- Using a gyrotron as the photon source – 300 W, 200 GHz
- SIS heterodyne detection for phase I
 - Single photon detector for phase II
- Plan to finish preparation by end of this year, measurement from early next year
 - Noise reduction is the key
 - About one month measurement for the first result

backup

Assuming conditions

	phase I	Phase II						
target	paraphoton	paraphoton	ALP					
power	5 kW							
meas. time	10 ⁶ sec (~ 10 days)							
detection	heterodyne	direct						
det. eff.	10 %							
line width	1 MHz	10 GHz						
noise	50 K	300 mK blackbody only						
conv. length	10	4.3 m						
mag. field	-	5 Tesla						
		A CONTRACTOR OF THE OWNER						

THz superconducting detectors

detector	metho d	priciple of detection	mate rial	tempe rature	noise level (NEP)	speed	noise source
SIS / STJ heter (superconductor- insulator- superconductor tunnel junction) direct	hetero dyne	Cooper pair broken -> change in I-V characteri stics	Nb	4K	10 ⁻²¹ x δf (10 ⁻¹⁵ with 1 MHz width)	slow (msec) Fourier transfo rm	quantu m thernal
	direct		Hf etc.	<0.3K	10 ⁻¹⁷	fast (nsec)	blackb ody, leak l
MKID (microwave kinetic inductance detector)		change in kinetic inductance	Al etc.	<1K	10 ⁻¹⁷	intermi diate (μsec)	blackb ody, amp noise
TES (transition edge sensor)		bolometer at around Tc	Hf etc.	<0.3K	10 ⁻¹⁷⁻¹⁹	slow (msec)	blackb ody