ボース・アインシュタイン凝縮を目指した ポジトロニウム冷却 I

<u>山田 恭平</u>、周 健治、橋立佳央理、石田 明、難波 俊雄^A、浅井 祥仁、 五神 真、田島 陽平^B、蔡 恩美^B、吉岡 孝高^B、大島 永康^c、 オロークブライアン^c、満汐 孝治^c、伊藤 賢志^c、熊谷 和博^c、 鈴木 良一^c、藤野 茂^D、兵頭 俊夫^E、望月 出海^E、和田 健^F

東大理、^A東大素セ、^B東大工、^C産総研、^D九大GIC、^E高エネ研、^F量研

京大複合原子力科学研究所専門研究会「陽電子科学とその理工学への応用」 2018.12.06

ポジトロニウムの ボース・アインシュタイン凝縮(Ps-BEC)

<u>ボース・アインシュタイン凝縮(BEC)</u>

- 高密度低温のほとんど全ての粒子が単一量子状態を占める。
- **原子レーザー**、コヒーレンスがある

Ps-BEC

- Psは他の反物質系と比べて生成が容易
- 質量が小さくBEC臨界温度が高い(10¹⁸ cm⁻³で14 K)
- ・反物質系で初のBECの有力候補
- ・Ps-BECは反物質レーザー

 $T_c = \frac{h^2}{2\pi m k_B} \left(\frac{n}{\zeta(3/2)}\right)^3$

1. <u>反物質に働く重力を</u> <u>原子干渉計を用いて測定する</u>

2. <u>511 keV ガンマ線レーザー</u>

Phys. Rev. A 92, 023820 (2015)

- 異なる経路を通るPs は、重力による減 速などを受けて位相が異なりうる。
- 重力の効果を見るのに必要な経路長は 20 cm。

Phys. stat. sol. 4, 3419 (2007)

- *p*-Psが2本の511 keV γ線に崩壊を利用
- Ps-BEC(原子レーザー)→ γ線レーザー
- 従来のX線の1/10の波長による微細構造
 プローブ

2つの課題: Psの高密度化と高速冷却

* : S. Mariazzi *et al.* Phys. Rev. Lett. 104, 243401 (2010)

* : D. Cassidy et al. physica status solidi 4, 3419 (2007) 4

Ps-BECを実現する新たな冷却手法 熱化とレーザー冷却の2段階

熱化とレーザー冷却を組み合わせることで Ps-BEC転移温度を下回る

2018/12/06

要求スペックを満たすレーザー光学系を 最先端技術を組み合わせ設計

2018/12/06

冷却レーザー系をKEKの実験室に合うよう コンパクトに組んでいる (2.0 m × 1.1 m)

Ti:Sapphire結晶

パルス化・線幅広帯域化のための共振器を作成中

- ・ 共振器長3.8 mを8個のミラーでコンパクトに折り畳んでいる
 (全体で96 cm×36 cm)
- 長時間幅のパルス発振のため729 nmで高反射のミラーを使用 一周あたりのロス=0.6%、フィネス=200

パルスエネルギー200 μJ/pulse かつ時間幅1μsの長パルスの出力に成功

	目標値	達成値
時間幅	> 300 ns	1 µs
パルスエネルギー	> 100 µJ/pulse	200 µJ/pulse
パルスエネルギー安定性	< 5%	50 %
タイミングジッター	< 20 ns	1 µs

- 不安定性とジッターの原因 ポンプレーザーのふらつき
- 対策: ポンプレーザー安定化 またはTi: Saphhire結晶の十分 な飽和

2018/12/06

Ps冷却レーザー開発状況

		要求値	達成状況	今後
シードレーザー 完成		強度 数mW パルスエネルギー <1 GHz 周波数ドリフト < 1 GHz	達成 25 mW 達成 <50 kHz 達成 0.8 GHz	-
共振器	パルス化	時間幅 >300 ns パルスエネルギー 100 µJ	達成 1 μs 達成 平均200 μJ	安定化のみ
	広線幅化	線幅 50 GHz	実験中	線幅の測定、評価
マルチパス増幅		パルスエネルギー 5 mJ	-	実験を進める
波長変換		パルスエネルギー 40 μJ	-	実験を進める
高速周波数シフト		300 nsで60 GHz	-	冷却実験の結果を 踏まえ、最適化

まとめ

- Ps-BECは反物質系で世界初のBECの最有力候補
- Ps-BECは重力などの基礎物理学への応用や、ガンマ線 レーザーといった応用がある
- Ps冷却レーザーは特殊な性能を要求するため、新しいレーザーシステムを作成中。729 nmのパルスエネルギー200 μJ かつ時間幅1 μsのパルス発振に成功。今年度中の完成を目指す
- 世界初のPsレーザー冷却をKEK-SPFで来年度中に実現することを目指している。結果を踏まえPs冷却レーザーの最適化を行う