X線自由電子レーザー施設 SACLAでの真空回折の探索II

<u>清野結大</u>,山崎高幸^A,稲田聡明,難波俊雄^A,浅井祥仁, 籔内俊毅^B,富樫格^{BC},犬伏雄一^{BC},大和田成起^B, 玉作賢治^B,矢橋牧名^{BC},石川哲也^B

東大理,東大素セ^A,理研/SPring-8^B, JASRI^C 2016/09/22

内容

これまでのトーク(22pSF-8山道、22pSF-9山崎、22pSF-10稲田)

- ・SACLAを用いたQEDへのアプローチ
- ・真空回折実験概要
- ・実験セットアップ

このトーク

- ・SACLAでのテスト実験
- ・今後の展望

- SACLAにて真空回折実験のテスト実験を行った
- ・ビームタイム

2016/06 2.5日間

・各種パラメータ

XFEL: 9.5keV レーザー: 2.5TW

- ・目的
 - √アライメント手法の確認
 - ✓課題の洗い出し

3

真空回折実験のポイント

本実験のカギは、大きく分けて4つ

1. レーザーの集光

・集光したレーザーで高強度場を作り出す

- 2. 時間的な衝突の保証(~psの精度)
 - ・レーザーが集光しているタイミングで衝突していること
- 3. 空間的な衝突の保証(~µmの精度)
 - ・XFELとレーザーのパスが交差していること (衝突点で中心軸が重なること)
- スリットによるシグナルの切り出し
 ・シグナルのパスを確保&BGを抑制 (テスト実験では検証する時間がなかった)

穴あき軸外し放物面鏡

- ・穴の開いた放物面鏡でレーザーを集光する
- ・穴にはXFELが通る

穴あき軸外し放物面鏡

- ・穴の開いた放物面鏡でレーザーを集光する
- ・穴にはXFELが通る

日本物理学会

2016/09/22

レーザーの集光

集光方法: ①レーザーのパワーを弱めた状態で、ミラーの角度を 調整して集光する ②レーザーをフルパワーにする

レーザーの集光

集光方法: ①レーザーのパワーを弱めた状態で、ミラーの角度を 調整して集光する ②レーザーをフルパワーにする

①レーザーのパワーを弱めた 状態での集光結果(<1µJ)

レーザーの集光

集光方法:①レーザーのパワーを弱めた状態で、ミラーの角度を 調整して集光する ②レーザーをフルパワーにする

レーザーとXFELのタイミングの保証

日本物理学会 2016/09/22

タイミング保証の要求精度

衝突点の、レーザーの集光点からのずれがどの程度許容できるか考える

- サンプルステージにCu薄膜(20µm)を置き、XFELで穴を開ける 1
- 2. 穴の位置をカメラで見て、場所(ピクセル数)を記録
- 3. Cu薄膜を取り除き、レーザーの集光像が記録した穴の位置に 来るようにミラーを調整

- 1. サンプルステージにCu薄膜(20µm)を置き、XFELで穴を開ける
- 2. 穴の位置をカメラで見て、場所(ピクセル数)を記録
- 3. Cu薄膜を取り除き、レーザーの集光像が記録した穴の位置に 来るようにミラーを調整

3.

- 1. サンプルステージにCu薄膜(20µm)を置き、XFELで穴を開ける
- 2. 穴の位置をカメラで見て、場所(ピクセル数)を記録
- 3. Cu薄膜を取り除き、レーザーの集光像が記録した穴の位置に 来るようにミラーを調整

レーザーとXFELの衝突位置の保証

- ・衝突点位置にCu薄膜(20µm)を設置し、 レーザーとXFELを同時入射する
- ・照射痕の位置を見比べ、レーザーとXFELの入射位置を確認する

真空回折実験の課題

次回のビームタイムに向けての課題

- ・レーザーの集光
 →最初の目標の20µmは達成
- ・**タイミング合わせ** →今回の集光サイズではOK
- ・位置合わせ
 - →他のアライメント時間を短縮することで、ずれを補正する 時間を確保
- ・シグナルの切り出し
 - 今回のビームタイムでは、スリットの設置によってシグナルを 切り出せるか(BGをどこまで落とせるか)検証する時間がなかった →SPring-8で予備実験を行う
 - ※スリット間の間隔:~10m スリットの幅:~100µm

今後の予定

10月 SPring-8ビームタイム (3日間) ・シグナルを切り出すスリットの設置方法の 検証等の予備実験を行う

- **11月** SACLAビームタイム (2.5日間)
 - ・前回の実験で確立した方法でアライメント時間を短縮させる
 - ・成功すると、真空回折を検証する初めての実験となる
 - ・感度はQED理論値の8桁下

来年度以降

- ・現在SACLAでは、<u>500TWレーザー</u>をインストール中
- ・このレーザーを1µmに集光して実験を行うと、 感度はQED理論値に達する
- ・500TWレーザーを用いて真空回折実験を行い、 QEDで予言される真空回折現象の初観測を行う

まとめ

- ・非一様な高強度電磁場中では、光が伝播する際に回折が起こる ことがQEDで予言されているが、未検証
- ・本実験では高強度電磁場を2.5 TWレーザーで生成し、 SACLAのXFELを入射させて真空回折を観測する
- ・今回のビームタイムではアライメントに時間がかかり、 レーザーとXFELを衝突させることが出来なかった
- ・11月のビームタイムでは、今回確立したアライメント方法を 駆使して時間を短縮し、真空回折の初検証を行う
- ・来年度以降に、SACLAの500 TWレーザーを用いて実験を行い、 QEDで予言される真空回折の初観測を行う