

X線自由電子レーザー施設SACLAにおける 高強度レーザーを用いた真空回折の探索

<u>清野結大</u>,山崎高幸^A,稲田聡明^B,難波俊雄^B,浅井祥仁, 籔内俊毅^C,富樫格^{CD},犬伏雄一^{CD},玉作賢治^C,井上伊知郎^C, 大坂泰斗^C,矢橋牧名^{CD},石川哲也^C,川合健太郎^E 東大理,高工研^A,東大素セ^B,理研/SPring-8^C,JASRI^D,阪大工^E 2019/09/17

本研究はSACLA大学院生研究支援プログラムの助成を受けたものです

真空回折とは

・標準理論やそれを超えた物理の多くは真空の非線形効果により
 高強度電磁場が真空の屈折率を変化させることを予言
 しかし未観測(測りたい!)
 ex) QED真空の屈折率: n = 1+9×10⁻²⁴(B[T])²
 ・未知粒子も屈折率変化に寄与

局所的な電磁場(pump光)で屈折率勾配を生み出すと、
 probe光に回折が生じる→真空回折
 パルスエネルギーW
 ノーロセ

真空回折とは

・小さな構造を通過するほど大きく回折するため、 非常に<mark>小さいpump光</mark>が必要 $\theta \sim 70 \ \mu rad \times \left(\frac{1 \ \mu m}{m}\right) \left(\frac{8 \ keV}{h\nu}\right)$

真空回折とは

実験場所:XFEL施設SACLA

SACLAでは高強度レーザーとXFELが 両方使える!

Pump光:500 TWレーザー

- ・昨年から共用運転開始
 瞬間的に高強度なフェムト秒レーザー パルス幅<u>30 fs</u>、パルスエネルギー<u>10 J</u> 波長<u>800 nm</u>
- ・補償光学の技術により、1µmまで
 集光する

Probe光:SACLAのXFEL

(X-ray Free Electron Laser)

・瞬間的に高強度の<mark>X線</mark>パルス

パルス幅<u><10 fs</u>

パルス光子数10¹¹ photon/pulse

•500 TWレーザーを1 µmに集光する

- 実験セットアップ
- ProbeのXFELを、X線ビームshaperで 角度発散を抑えつつ2 µmまで絞る
- Probe XFELを、500 TWレーザー集光点で「ng 0.6 正面衝突させる
 Probe XFELの一部が回折&偏光変化する 確率:~10⁻¹² 角度発散:~70 µrad

1st 実験(2017/12)と課題

- 真空回折実験はこれまで未検証
 まずは実験の基礎技術開発&世界初実験を行うことが大切
- →2017/12にSACLAで第一弾のプロトタイプ実験を行った
 - ✓回折の効果のみを観測するセットアップ
 - ✓ 0.6 TWレーザーでアライメント技術を開発
 - ✓世界初の真空回折実験を行い、QED理論値の6×10³⁴倍に制限
- ・さらなる感度向上に向けた実験課題は、
 - 1. レーザー集光(シグナル増強)

→補償光学システムを導入

2. BGのさらなる抑制

低角度発散のProbe XFELが必要

→X線ビームshaperを開発

1st 実験(2017/12)と課題

- 真空回折実験はこれまで未検証
 まずは実験の基礎技術開発&世界初実験を行うことが大切
- →2017/12にSACLAで第一弾のプロトタイプ実験を行った
 - ✓回折の効果のみを観測するセットアップ
 - ✓ 0.6 TWレーザーでアライメント技術を開発

✓世界初の真空回折実験を行い、QED理論値の6×10³⁴倍に制限

- ・さらなる感度向上に向けた実験課題は、
 - 1. レーザー集光(シグナル増強)

→補償光学システムを導入

2. BGのさらなる抑制

低角度発散のProbe XFELが必要

→X線ビームshaperを開発

これらの導入で**感度向上を目指した2nd 実験を行った**

2nd 実験セットアップ(2019/06) 補償光学システムとshaperを導入した実験を行った :2019/06 96時間 - 期間 - レーザー: 0.6 TW fs laser 40~60µradの - XFEL : BL3 8.4 keV 回折角のシグナルを 衝突点 切り出して測定 (XFEL10µm) EH1 EH4 EH2 補償光学 コンプレッサー スリット shaper システム PD **)**0um **XFEL** スリット 5 m 10 m 11 日本物理学会 2019/09/17

XFEL

補償光学システム

(2nd 実験,今回)

✓集光距離 ×1/2 (51mm)✓ビームサイズ ×2 (18mm)

(2nd 実験,今回)

✓ 集光距離 ×1/2 (51mm)
 ✓ ビームサイズ ×2 (18mm)

ShaperによるBG抑制 _{大角度のX線が}

<u>1st 実験</u>

- 大角度X線がBGに
- ・スリットでの除去は 回折光のBGを生む

<u>2nd 実験</u>

- ・X線ビームshaperを導入
- ・実際は直交させた2つの
 shaperで2次元集光

<u>2nd 実験</u>

1st 実験

- ・X線ビームshaperを導入
- ・実際は直交させた2つの shaperで2次元集光

<u>2nd 実験</u>

1st 実験

- ・X線ビームshaperを導入
- ・実際は直交させた2つの shaperで2次元集光

日本物理学会 2019/09/17

測定結果

- ・これまでのJPSで報告してきた 金属箔を用いた位置・時間合わせ方法により XFEL(10 µm), レーザー(2µm)を **50** 50 ~µm,~100fsの精度で衝突させた **50** 40
- ・シグナル測定を行った
 - レーザーOn/Off(BG)を15 Hz
 - レーザー照射タイミングでスキャン

・実験感度は

- ✓レーザー&XFEL集光 ↑5×10²
- ✓シグナルアクセプタンス ↑1×10⁸

(回折角3µrad→17µradで

- アクセプタンス1%)
- ✓BG抑制率向上 ↑**3×10**²
- →計~13桁感度向上(QEDまであと20桁)

有意なシグナルはなさそう 現在解析中

真空回折観測へ向けた今後の課題

- ・レーザー強度増強&集光
 - 500 TWレーザーへの補償光学 システムの導入 (感度**8桁**向上)
- ・BG抑制用の偏光子開発
 - 偏光変化をみる偏光子の開発 Siの複屈折率の結晶面依存性や 表面粗さの消光比への影響等の 測定を計画中
- ・500 TWレーザーでの実験システムの 設計及び測定

来年以降に5日間の測定を行い、

真空回折の世界初観測

高強度電磁場は真空複屈折も生む
 →シグナルの一部は偏光変化する
 →特定の偏光を通す偏光子(精度1e-9)で
 S/Nを向上させる

まとめ

- ・真空回折とは、高強度電磁場によって真空の屈折率が変化し、 伝播する光が回折する未観測現象
- ・本実験では高強度電磁場を500 TWレーザーで生成し、 SACLAのXFELをprobe光として真空回折を探索する
- ・補償光学システム、shaperを用いた実験を行い、 レーザー集光サイズを小さく、BGを減少させられることを実証した
- ・今後は、500TWレーザーシステムへのデフォーマブルミラーの導入、 偏光子開発を行っていく
- ・来年以降に500 TWレーザーを用いて実験を行い、 QEDで予言される真空回折の初観測を行う