Excitation of positronium by laser for efficient cooling

Kenji Shu^{1,3},

K. Yamada¹, K. Hashidate^{1,3}, A. Ishida¹, T. Namba¹, S. Asai¹, M. Kuwata-Gonokami¹,

Y. Tajima², E. Chae², K. Yoshioka², N. Oshima³, B. E. O'Rourke³, K. Michishio³,

K. Ito³, K. Kumagai³, R. Suzuki³, S. Fujino⁴, T. Hyodo⁵, I. Mochizuki⁵, K. Wada⁶ and T. Kai⁷

Supported by JSPS KAKENHI Grant Numbers JP16H04526, JP17H02820, JP17H06205, JP17J03691, JP18H03855, JP19H01923, MATSUO FOUNDATION, Mitutoyo Association for Science and Technology (MAST), Research Foundation for Opto-Science and Technology, and TIA Kakehashi TK17-046, TK19-016.

https://tabletop.icepp.s.u-tokyo.ac.jp/?page_id=365

1

The 4th Japan-China Joint Workshop on Positron Science (JWPS 2019) 2019.11.01 Nara, Japan

Our new idea to realize Ps-BEC

Interactions of 2P-state Ps with materials are not well known.

2P-Ps were reported to be strongly affected by material

Excited amounts to 2P-Ps were measured against excitation laser wavelength

D. B. Cassidy et al. PRL 106, 023401 (2011).

- Resonance frequency shifted
- Width narrowed

B. S. Cooper et al. PRB 97, 205302 (2018).

- Width broadened
- 2P-Ps decays in very short lifetime

Contradicting effects have been reported. These effects make laser cooling difficult. We manufactured well-characterized silica cavity and observed 2P-Ps behavior.

Exciting Ps to 2P state by shining 243 nm, 3 ns pulsed UV laser.

(1) Excite Ps to 2P state by shining243 nm UV laser.

(2) If nothing special happens...

Ps is de-excited to 1S state with lifetime of 3.2 ns (Lyman-alpha).

(2') If lifetime of 2P-Ps inside pores is short as reported...

Annihilation gamma-rays will be increased.

Experimental setup at KEK slow positron facility (KEK-SPF) in Tsukuba, Japan

KEK-SPF B1 beamline

Energy	5 keV
Highest Intensity	10 ⁵ e⁺/ pulse
Repetition	50 Hz
Time width	16 ns
Size	Φ~10 mm

Operated in short pulse mode to synchronize with the pulse laser

Experimental setup at KEK slow positron facility (KEK-SPF) in Tsukuba, Japan

We used silica aerogel as silica cavity. Capped the surface of the aerogel by amorphous silica thin film using plasma CVD.

Silica aerogel 0.1 g cm⁻³ 50 nm pores 0.5 mm thick

CVD thickness 75 nm

- Consistent with the lifetime expected in 50 nm pores.
- High Ps formation fraction (50% of stopped positrons)
- We obtain *o*-Ps in the pores as expected.

Confining of Ps in pores was observed by the blocking cap

• PALS measurement by slow positron beam was conducted to confirm Ps confinement in pores

PALS spectrum will be distorted to pretend that o-Ps has short lifetime

5 keV

e⁺

BaF₂

o-Ps were observed by delayed gamma-rays

PMT signals made by annihilation gamma-rays detected by LaBr₃(Ce) scintillator (signal amplitude)

2P-Ps decays into gamma-rays immediately in silica aerogel

2P-Ps decays into gamma-rays immediately in silica aerogel Amplitude (V WITH laser (A) € 0.04 Amplitude diff 10⁻¹ Signal(A) - signal(B)WITHOUT laser (B) 0.02 10⁻² Ps decreased 10⁻³ 0 0 200 400 Time (ns) 100 200 300 400 PMT signals made by annihilation Time (ns) Laser shining gamma-rays detected by LaBr₃(Ce) Signal difference caused by scintillator (signal amplitude) shining UV laser

Only UV laser of 300 µJ pulse induced Ps decay to gamma-rays. Lifetime of 2P-Ps is short in silica aerogel.

Laser cooling of Ps in silica aerogel seems to be very difficult....

Laser cooling of Ps in silica aerogel seems to be very difficult....

<u>Next steps</u>

1. Mechanisms of annihilation and broadening will be studied

- Other porous silica
- Different materials. Tungsten, Zeolite, Zirconia, ...
- Any idea?

2. The first Laser cooling of Ps in vacuum will be conducted to measure its efficiency

• Porous silica with open pores will be used

Next steps

1. Mechanisms of annihilation and broadening will be studied

- Other porous silica
- Different materials. Tungsten, Zeolite, Zirconia, ...

<u>Next steps</u>

1. Mechanisms of annihilation and broadening will be studied

- Other porous silica
- Different materials. Tungsten, Zeolite, Zirconia, ...
- Any idea?

2. The first Laser cooling of Ps in vacuum will be conducted to measure its efficiency

• Porous silica with open pores will be used

Ps - laser interaction regions will be enlarged

Highly reflective (98%) mirrors

- Ps will travel 50 mm during the laser cooling process
- UV laser will be reflected ~ 20 times

Ps will be confined in vertical direction to the laser

Original UV laser for cooling

Porous silica with open pores

Highly reflective (98%) mirrors

Ps will be confined in vertical direction to the laser

Silica wafers

- Wafers will be separated for ~ 10 mm to confine Ps in the laser shinning region
- The distance ensures only 1S-Ps will be reflected by the wafers

Highly reflective (98%) mirrors

Preparations are ongoing

Expected velocity distributions

Laser reflector setup

The first laser cooling will be conducted by 2020 Apr.

Preparations are ongoing

Expected velocity distributions

Laser reflector setup

The first laser cooling will be conducted by 2020 Apr.

Preparations are ongoing

Expected velocity distributions

Laser reflector setup

The first laser cooling will be conducted by 2020 Apr.

Summary

1. 2P-Ps annihilates into gamma-rays

immediately in South silica aerogel pores. Studies on annihilation on annihila

2. Ps laser cooling in vacuum will be conducted with enhancing laser - Ps interactions. In order to realize Ps-BEC, we will develop new silica cavity without 2P-Ps decay and apply laser cooling tested in vacuum.

