ボース・アインシュタイン凝縮を目指した ポジトロニウム冷却 ||

山田 恭平、周 健治、橋立佳央理、石田 明、難波 俊雄^A、浅井 祥仁、 五神 真、田島 陽平^B、蔡 恩美^B、吉岡 孝高^B、大島 永康^C、 オロークブライアン^C、満汐 孝治^C、伊藤 賢志^C、熊谷 和博^C、 鈴木 良一^C、藤野 茂^D、兵頭 俊夫^E、望月 出海^E、和田 健^F、甲斐 健師^G

東大理、^A東大素セ、^B東大工、^C産総研、^D九大GIC、^E高エネ研、^F量研、^G原子力機構

日本物理学会第75回年次大会 2020.3.16@名古屋大学 16aG20-10

Ps-BEC実現のためには高速冷却が不可欠 Psに最適化した専用のレーザー冷却光源を開発

<u>最大の問題</u>

Psの寿命が142 nsと短い

<u>2つの課題</u>

1. 瞬間的な高密度Psの生成 > 10¹⁷ cm⁻³ in < 50 ns 2. Psの高速冷却 < 10 K in ~300 ns レーザー冷却を行う

Ps冷却レーザーの要求スペック

要求スペックを満たすレーザー光源は 商用では存在せず、自作する

光源開発自体も新しく、チャレンジングである

冷却レーザーシステムの外観(2.0 m×1.1 m)

2020/3/16

冷却レーザーシステムの外観 (2.0 m×1.1 m)

2020/3/16

PAFCG はPs冷却に最適な性質を持つ

数値計算手法を開発し、729 nmプロトタイプ PAFCGの 性能の見積もりを得た。これらを実証する。

② スペクトル広がり 150 GHz

長時間幅・広帯域な729 nm レーザーパルスを実現

時間波形

スペクトル

実験と数値計算に定性的な一致が見られる

十分な時間幅の243 nmパルスを実現した。

2020/3/16

達成状況と今後の展望

- Ps冷却のための243 nm・長時間幅・広帯域・高速周波数
 チャープの性質を備える冷却レーザー光源の原理を実証した。
- Ps冷却のために新しい光学システムを開発し、現状のプロトタイプ冷却レーザーでそのほぼ最大の性能を実現した。
- システムについてその性能の定式化を行った。
- → 系の改良によって要求値を満たすレーザーシステムも 実現可能との見積もりが得られた。
- 世界初のPsレーザー冷却の原理検証実験を目指す。