

X線自由電子レーザー施設SACLAにおける 高強度レーザーを用いた真空回折の探索

<u>清野結大</u>,山崎高幸^A,稲田聡明^B,難波俊雄^B,浅井祥仁, 籔内俊毅^C,富樫格^{CD},犬伏雄一^{CD},玉作賢治^C,井上伊知郎^C, 大坂泰斗^C,矢橋牧名^{CD},石川哲也^C,川合健太郎^E 東大理,高工研^A,東大素セ^B,理研/SPring-8^C,JASRI^D,阪大工^E 2020/03/16

•本研究はSACLA大学院生研究支援プログラムの助成を受けたものです

真空の屈折率変化と真空回折

• 小さな構造を通過するほど大きく回折するため、

非常に**小さいpump光**が必要

$$heta \sim 70 \ \mu \mathrm{rad} imes \left(rac{1 \ \mu \mathrm{m}}{w_{\mathrm{L}}}
ight) \left(rac{8 \ \mathrm{keV}}{h
u}
ight)$$

真空の屈折率変化と真空回折

• 小さな構造を通過するほど大きく回折するため、 非常に**小さいpump光**が必要 $heta \sim 70 \ \mu \mathrm{rad} imes \left(rac{1 \ \mu \mathrm{m}}{u}
ight) \left(rac{8 \ \mathrm{keV}}{h
u}
ight)$ 高エネルギーprobe光& 高強度pumpレーザーが最適 実験感度 $\propto \frac{(h\nu)^2 \tilde{W}^2}{w_r^2 (w_r^2 + w_x^2)}$ ×(probe光の分離率) **Pump**光 パルスエネルギーW 回折光 **Probe**光 . 光子エネルギー**h***ν* **W**X

実験場所:XFEL施設SACLA

SACLAでは高強度レーザーとXFELが 両方使える!

Pump光:500 TWレーザー

- ・昨年度から共用運転開始
 瞬間的に高強度なフェムト秒レーザー パルス幅<u>30 fs</u>、パルスエネルギー<u>10 J</u> 波長<u>800 nm</u>
- ・補償光学の技術により、1µmまで
 集光する

Probe光:SACLAのXFEL

(X-ray Free Electron Laser)

・瞬間的に高強度の<mark>X線</mark>パルス

パルス幅<u><10 fs</u>

パルス光子数10¹¹ photon/pulse

•500 TWレーザーを1 µmに集光する

- 実験セットアップ
- ProbeのXFELを、X線ビームshaperで 角度発散を抑えつつ2 µmまで絞る
- Probe XFELを、500 TWレーザー集光点で「ng 0.6 正面衝突させる
 Probe XFELの一部が回折&偏光変化する 確率:~10⁻¹² 角度発散:~70 µrad

2nd 真空回折実験

・これまで(前回までのJPSでの報告内容)

- 2017/12にSACLAでプロトタイプ実験(1st 実験)を行い、 世界初の真空回折実験を実現 & QED理論値の4×10³⁴倍に制限
- 感度向上には、以下の2つが必要だった

①シグナル増強

→補償光学システムを導入し、レーザーを集光

②BGのさらなる抑制

低角度発散のProbe XFELが必要

→X線ビームshaperを開発

・2nd 実験

2019/06に、①,②を実現して感度を向上させた、第二弾の実験を行った このトークでは、その概要を紹介します

2nd 実験セットアップ(2019/06)

XFEL

レーザー&XFELサイズ

XFELのワイヤースキャン結果

・レーザー集光サイズ(2Dgaus fit)
2σ縦∶ 2.0±0.2 μm
横: 1.9±0.2 μm

・衝突点でのXFELサイズ(FWHMを評価) 2σ 縦: **13±3 μm** 横:19±3 μm

重要なのは、両パルスがちゃんと ぶつかっているか(次ページ以降)

空間アライメント

 ・衝突点位置に金箔(20µm)をセットし、XFELとレーザーで照射痕を 作る。両者の相対位置を測定・比較し、レーザー位置を調整することで空間アライメントを行った。

衝突点にセットした

- ・XFEL照射痕とレーザー照射痕の位置を
 レーザー顕微鏡で測定し比較したところ、
 アライメント精度は~3µm (詳細解析中)
- ・XFELサイズ(**13µm**)に対し アライメントの不定性**3µm**は十分小さく、 レーザーとXFELは空間的にぶつかっている

タイミングアライメント

- GaAs基板(5µm)を用いたタイミングアライメントを行った。
- レーザータイミングを調整しながら、レーザーとXFELをGaAs基板に 照射すると、同タイミングで照射されたときレーザー透過率が下がる

<u>タイミングアライメントのセットアップ</u>

⇒XFELとレーザーが同時に照射

・XFELとレーザーが同時に照射されたタイミングを測定できた ・右図の<mark>同時照射のタイミングにきちんとアライメント出来た</mark>ので、 真空回折測定を行った

-ザー透過光量測定結果

- ・シグナル測定を行った
 - レーザーOn/Off(BG)を15 Hz
 - レーザー照射タイミングでスキャン
- ・観測光子数 BG が下図
 有意なシグナルはなさそう
 詳細な解析結果は次回の学会でご報告します!

真空回折観測へ向けた今後

現在、2つの方法を検討中

<u>方法1(従来の作戦)</u>

・BG抑制用の偏光子開発

偏光子(精度**1e-9**)でS/Nを向上

・500 TWレーザーでの実験

5日間の測定で真空回折の世界初観測

<u>方法2</u>

- ・SACLAにはX線ビームライン(BL2,3)の他に 軟X線ビームライン(BL1)がある これをポンプ光に用いて実験する
- ・軟X線は波長が短く、100nmまで集光できる
 →シグナルの角度発散がO(1)mradに

(SACLAのシード化などのアップグレードが達成されれば) 3日で1photon程度のシグナルが期待

まとめ

- ・真空回折とは、高強度電磁場によって真空の屈折率が変化し、 伝播する光が回折する未観測現象
- ・本実験では高強度電磁場を500 TWレーザーで生成し、
 SACLAのXFELをprobe光として真空回折を探索する
- ・1st実験をアップグレードした2nd実験を行った 詳細な結果は解析中
- ・今後の課題は、偏光子開発と500TWレーザーを用いた実験
- ・軟X線ビームラインをpump光に用いた真空回折実験も検討中