ボース・アインシュタイン凝縮を 目指したポジトロニウム冷却 I

橋立佳央理,石田明,難波俊雄^A,

浅井祥仁, 五神真, 山田恭平, 田島陽平^B, 周健治^B, 蔡恩美^B, 吉岡孝高^B, 大島永康^C,

オロークブライアン^c,満汐孝治^c,伊藤賢志^c,熊谷和博^c,

鈴木 良一^C,藤野 茂^D,兵頭 俊夫^E,望月 出海^E,和田 健^E,甲斐健師^E

東大理,東大素セ^A,東大工^B,産総研^c,九大GIC^D,高工研^E,原子力機構^F

ポジトロニウムのボース・アインシュタイン凝 縮 (Ps-BEC) の前段階として、 ナノ細孔中での Ps のレーザー冷却を行いたい

- レーザー冷却シミュレーション
- ・精度よく冷却したことを確認するために、必要な陽電子ビームの強度の見積もり
- ・陽電子 flux を高めるための陽電子ビーム磁気集 東試験
- ・ 今後の展望

レーザー冷却に必要な陽電子強度を求める ための冷却シミュレーション

より低い温度に冷却できる

予測される温度測定精度

ドップラー幅より狭い線幅の 243 nm レーザーで Ps を 1S から 2Pに励起 →532 nm レーザーで電離させ、消滅ガンマ線強度を測定する

ターゲット 300 K、 得られる温度の精度は 8%~24 K/ 300 K

[個/pulse]

パラメータ	
陽電子ビームの繰 り返し周波数	50 Hz
測定時間	72 時間
レーザーの繰り返 し周波数	10 Hz
ターゲットの温度	4 K
必要な精度	3σ

Beam profiles

- Energy : 5 keV
- Intensity : $3 \times 10^4 e^+$ /pulse
- Pulse repetition : 50 Hz
- Pulse width : 11 ns

CCDカメラで、MCP/phosphor screenの 画像を撮って集束したビームを観察 した.

2020/9/16

CCDカメラで撮影したbeam profile

@0.28 A (470 A•turn)

ビームのFWHM

ビーム径は 13 mm→2.6 mm に集束できた

66978

-2.579

0.8906

2.679

2.288

50

40

30

20

10

Х

10

最小ビーム径

0

5

X POSITION (mm)

-5

: x direction: 2.6 mm (@0.25 A) y direction: 2.8 mm (@0.26 A) 2D-fitting: 2.6 mm (@0.26 A)

-10

-10

陽電子の輸送効率は13%だった

• 陽電子ビームは磁気集束レンズに流した電流が 0.26 A のとき 最も集束したが、screen に到達する量は 0.28 A で最大

目標値までの強度は約1.5桁改善したが、あと1桁の改善が必要

- 30000 個/pulse/(13 mm)²から、3800 個/pulse/(2.6 mm)² に改善した
- ・まだ1桁足りない

Summary

- ポジトロニウムのレーザー冷却のための陽電子磁気集束
 レンズの開発を行っている
- KEK-SPFにて、産総研で試作された磁気集束レンズで陽 電子集束実験を行った
- これによりビーム径は13 mm → 2.6 mm に集束された
- ・目標値までのビーム強度は1.5桁改善された
- 今後強度を改善し、冷却実験を行う