ボース・アインシュタイン凝縮実現のための ポジトロニウム冷却

東大理¹, 東大素セ², 東大工³, 産総研⁴,

九大GIC⁵, KEK物構研⁶, 原子力機構⁷, 高麗大学⁸

石田 明¹,橋立佳央理¹,難波俊雄²,浅井祥仁¹,五神 真¹,
 田島陽平³,小林拓豊³,魚住亮介³,周 健治³,蔡 恩美^{3,8},吉岡孝高³,
 大島永康⁴,オロークブライアン⁴,満汐孝治⁴,伊藤賢志⁴,熊谷和博⁴,鈴木良一⁴,藤野 茂⁵,兵頭俊夫⁶,望月出海⁶,和田 健⁶,甲斐健師⁷

本研究はJSPS科研費 JP16H04526, JP17H02820, JP17H06205, JP17J03691, JP18H03855, JP19H01923, 公益財団法人 松尾学術振興財団、公益財団法人 三豊科 学技術振興協会、公益財団法人 光科学技術研究振興財団、公益財団法人 三菱財団、 TIA連携プログラム探索推進事業「かけはし」TK17-046, TK19-016の助成を受けたもの です。 <u>https://tabletop.icepp.s.u-tokyo.ac.jp/?page_id=110</u>

> 令和3 (2021) 年7月9日 第58回アイソトープ・放射線研究発表会@オンライン開催

2021/07/09

目次

ポジトロニウム (Ps) のボース・アインシュタイン凝縮 (BEC) の目的:

<u>反物質</u>の新量子多体系である低温量子凝縮相 =<u>反物質レーザー</u>を実現

- Ps-BEC 実現スキーム
- Ps レーザー冷却実現に向けた実験の状況
- 2020 年度 KEK 低速陽電子実験施設 (SPF) における実験の結果速報

最大の問題

Ps は寿命が142 ns と 短い

<u>2つの課題</u>

- 1. 瞬間的な高密度 Ps の 生成
 - < 50 ns で > 10¹⁸ cm⁻³ (現状: 10¹⁵ cm⁻³)
- 2. Psの高速冷却 ~300 ns で < 10 K に冷却 (現状: 150 K)

* : S. Mariazzi *et al.* Phys. Rev. Lett. **104**(2010)243401, D. Cassidy *et al.* physica status solidi **4**(2007)3419.

5

1. 陽電子集束システム

2021/07/09

9

まずは真空中で Ps のレーザー 冷却を実証する

- 開放孔をもつ Ps 生成 材(シリカエアロゲル) から真空中に放出さ れた Ps にレーザーを 照射
- レーザーと Ps の相互 作用領域を確保する ため、レーザーは高反 射率ミラーで多重反射
- 2 枚の石英ガラス板で Ps を閉じ込め

13

KEK-SPF (SPF-B1) における実験

・プロトタイプのPs冷却用レー ザーで部分的に冷却してみ る

→Ps全体を冷却するには 線幅が足りないが、一部で も冷却されれば効果が見え るはず!

- これまでのビームタイムで以
 下を達成:
 - レーザー光学系のモニ
 ター・制御システムの自動化・高度化
 - レーザーを使った Ps 温
 度測定を安定的に行う
 システムを自動化
 - □ 冷却効果が見えない条件で、測定系全体における冷却レーザーの影響調査

Ps レーザー冷却の早期実現に向け、 着々と準備を進めています。 今後の進展にご期待ください!

まとめ

- 1. Ps-BEC を実現して世界初の反物質レーザーを作りたい。
 - 反物質系低温量子凝縮相の研究
 - •「なぜ、宇宙に物質のみ残ったのか」を解明
 - ガンマ線レーザーの実現
- 2. ナノ細孔中で Ps をレーザー冷却するという、新しい Ps-BEC 実現スキームを提案した。
- 3. 今年度中にまず真空中での Ps レーザー冷却を実証すべ く、準備を進めている。既にレーザー・Ps 反射装置を使っ て高効率で Ps の 1S→2P 遷移を起こすことに成功した。
- 4. 現在、プロトタイプのPs冷却用レーザーによるPs冷却実験 に挑戦している。

https://tabletop.icepp.s.u-tokyo.ac.jp/?page_id=110

※ JST 創発的研究支援事業に採択されました。