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Abstract
Conventional approaches to deconvoluting piled-up waveforms
produced by scintillator gamma detectors use techniques such as FFT
filtering to approximate the true arrival times and amplitudes of the
individual pulses within the waveform. Although these approaches are
effective, a method with an improved deconvolution rate and accuracy
is desirable. We have, therefore, developed a variety of deconvolution
techniques using machine learning—including a method using
unsupervised learning, which requires no conventional techniques to
be performed on the data beforehand in order to obtain a ground truth

Approach 2: Unsupervised Learning
(1) The raw waveforms are fed directly into the

network (Fig. 8).
(2) The network-predicted signal (i.e. supposed

deconvoluted waveform; Fig. 9, red line) is
convoluted with an IRF (Instrument Response
Function; Fig. 9 inset) predictor—a learnable
parameter that is trained and learned
alongside the primary signal predictor
network.

(3) A background is also predicted by an
autoencoder network that is provided only a
small portion of the waveform as input (to
detect timing shifts), and is added to the
convoluted signal (Fig. 9, green dotted).

(4) The result is then provided to the loss
function along with the original raw
waveform and the training continues.

Approach 1: Wiener Deconvolution-based
Wiener deconvolution is a conventional 
technique that uses an FFT high-pass filter with 
the following Fourier space formulation:

Fig. 1 is a comparison of the raw and filtered 
waveforms from [1]; Fig. 2 provides a correlation 
of the filtered pulse peak heights and estimated 
energy deposition from integrating the raw 
waveforms [1].

The machine learning approach was implemented 
by the following procedure:
(1) A dataset consisting of a large portion of raw

waveforms is first deconvolved using a
conventional Wiener deconvolution method
(Fig. 3) [1].

(2) A peak-finding algorithm measures the
amplitudes and locations of the deconvolved
peaks and creates a vector of the same length
as the waveform with delta-like peaks that
represent the locations and amplitudes of the
peaks in the deconvolved waveform (Fig. 4).

(3) An architecture based on the pix2pix GAN [2,
3] is trained with the delta-like vector as the
“clean” input and the raw waveform as the
“noisy” input (Fig. 5).

(4) The network eventually learns to deconvolve
the waveform in a way that is potentially
faster than the FFT approach, with the
additional ability to detect peaks in the
waveform that the FFT approach missed
(Fig 6).

(5) The positronium lifetime and pulse
amplitudes are measured using both the
Wiener deconvolution and the network-
based deconvolution approaches (Fig. 7).

Approach 3: Unsupervised + Synthetic Data
This approach is identical to the unsupervised
approach, but the waveforms are synthetic. The
IRF has intentional sine wave noise added to it
(Fig. 12), and the overall waveform contains
Gaussian noise (Fig. 10, blue line). This approach
is used to confirm that the technique is capable
of learning arbitrary IRFs and backgrounds (Fig.
10, green dashed) with a relatively large number
of pile-up events (see Fig. 11 for comparison). The
predicted peaks are enlarged for clarity.

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

The data for Approach 1 and 2 were collected via a positron beam—the piled-up 
pulses are therefore due to the delayed annihilation of re-emitted positronium (Ps).

pix2pix-based GAN 
inspired by Ref [3]. 
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This approach uses the 
same GAN architecture as 
Fig. 1 for the signal 
predictor network, but Fig. 
4 is simplified for clarity.
At the beginning of 
training, the “predicted 
signal”, IRF predictor, and 
background predictor are 
all randomly initialized, and 
the signal predictor 
network gradually learns 
how to deconvolve the 
original waveform into the 
individual pulses as the IRF 
and background are 
learned simultaneously.

The Wiener 
deconvolution is an 
FFT-based filter that 
deconvolutes the 
waveform to produce 
Fig. 1 [1]. 
Fig. 2 is an example of 
the delta-like peaks 
used to represent the 
arrival times and 
amplitudes.
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