Development of nanoporous materials to form dense and cold positronium for Bose-Einstein condensation Akira Ishida^{1*}, Toshio Namba¹,

Nagayasu Oshima², Brian E. O'Rourke², Koji Michishio², Kenji Ito², Toshio Hyodo 3 , Izumi Mochizuki 3 , Ken Wada 3 , Masaki Maekawa 4

¹ The University of Tokyo **2 2 2 2 AIST**

OKEK

³ KEK IMSS

Ps-BEC

⁴ QST Takasaki

https://tabletop.icepp.s.u-tokyo.ac.jp/psbec_en/

The 13th International Workshop on Positron and Positronium Chemistry (PPC13), October 30, 2024, Kanazawa, Japan

end and the contract of the Coral of the Oral-12, Session D3-1

Acknowledgement

創発的研究支援事業 Fusion Oriented REsearch for disruptive Science and Technology

This work was partially supported by

- JST FOREST Program (Grant Number JPMJFR202L),
- JSPS KAKENHI Grant Numbers JP16H04526, JP17H02820, JP17H06205, JP17J03691, JP18H03855, JP19H01923, JP23H05462,
- MATSUO FOUNDATION,
- Mitutoyo Association for Science and Technology (MAST),
- Research Foundation for Opto-Science and Technology,
- The Mitsubishi Foundation,
- TIA Kakehashi TK17-046, TK19-016.

This work was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2017P009, 2018G100, 2020G101, 2020G631, 2022G087, 2023G157, 2024G143).

https://tabletop.icepp.s.u-tokyo.ac.jp/psbec_en/

Contents

- ●Motivations for positronium Bose-Einstein Condensation (Ps-BEC)
- ●Overview of the current status of our Ps-BEC project:
	- A) High-density Ps formation
		- **Positron focusing**
		- 2. Ps formation material
	- B) Rapid Ps cooling
		- 3. Thermalization
		- 4. Laser cooling

Goals:

We want to realize an **antimatter quantum condensate** = positronium Bose-Einstein condensate (Ps-BEC). **Gamma-ray lasers** may be realized using Ps-BEC as a source.

Ps-BEC for antimatter gravity measurements

D. B. Cassidy and A. P. Mills, Jr., phys. stat. sol. (c) **4**, 3419 (2007).

M.K. Oberthaler / Nucl. Instr. and Meth. in Phys. Res. B **192** (2002) 129–134

Utilizing Ps⁻

Self-annihilations of Ps-BEC can generate 2 coherent and entangled gamma-rays: Realization of **gamma-ray lasers**

H. K. Avetissian *et al.*, Phys. Rev. A **92**, 023820 (2015). 2024/10/30 ⁶

Oral-12, Session D3-1

Our Target: **Positronium Bose-Einstein condensate (Ps-BEC)**

* : S. Mariazzi *et al.,* Phys. Rev. Lett. **104**, 243401 (2010) * : D. Cassidy *et al.,* physica status solidi **4**, 3419 (2007)

- Ps must be dense and cold
- High critical temperature because of Ps light mass (14 K at 10¹⁸ cm−3)
- One of the best candidates for the first antimatter BEC
- BEC is "Atomic laser". We would like to make the first antimatter laser and perform new experiments using the coherency of Ps-BEC.

Main problem Ps lifetime is only 142 ns Two challenges to realize Ps-BEC

Two challenges

- 1. Instant creation of dense Ps > 10¹⁸ cm−3 in < 50 ns
- 2. Rapid cooling of Ps < 10 K in $~200$ ns

Our idea to realize Ps-BEC

Combination of Thermalization and Laser cooling is suitable for fast Ps cooling to realize Ps-BEC.

K. Shu *et al.,* J. Phys. B **49**, 104001 (2016), A. Ishida *et al.*, JJAP Conf. Proc. **7**, 011001 (2018).

Silica (SiO₂) aerogel was a good candidate for Ps formation and cooling material. The surface of the aerogel capped with an amorphous silica thin film by plasmaenhanced chemical vapor deposition (CVD).

Ps Laser Cooling and Its Challenges

Ps energy level and lifetime in vacuum

Article

Cooling positronium to ultralow velocities with a chirped laser pulse train

Ps is laser cooled by irradiating a 243 nm UV laser corresponding to the transition between 1S-2P and repeating excitation and de-excitation between 1S-2P.

We have succeeded in Ps laser cooling in vacuum. (Nature **633**, 793–797 (2024)) *Achieved 1 K in vacuum (1D cooling)!*

In silica aerogel, when Ps is excited 1S→2P with lasers, it immediately annihilates into γ-rays (in a time well shorter than 2P→1S's spontaneous deexcitation life of 3.2 ns). The mechanism is not yet clear.

We performed a test experiment at KEK IMSS Slow Positron Facility (SPF), Tsukuba, Japan.

Experimental setup at KEK-SPF

KEK-SPF B1 beamline

Positrons were focused to 3 mm so that it matched the laser size.

2024/10/30 **1** Cral-12, Session D3-1 **1** 2024/10/30 **1** 2024/10/30 **1** 2024/10/30 K. Shu, Ph.D. thesis (UTokyo, 2020).

Ps annihilation was observed after laser irradiation

Comparison of the average waveform of the signal detected by the scintillator with and without a 243 nm laser after about 300 ns of positron beam injection on silica aerogel

Oral-12, Session D3-1

Decay occurs only at around the wavelength of 243 nm Immediately after 1S-2P transition; 2P-Ps decays.

Ps in silica aerogel is cooled by thermalization

The later the irradiation timing, the lower the 2P-Ps decay rate.

2P-Ps decay rate decreases by Ps thermalization cooling?

2024/10/30

Oral-12, Session D3-1

Ps laser transition experiment inside silica aerogel cooled by a refrigerator (June 2024 @ KEK-IMSS-SPF-B1, 7.5 keV)

Confirmed decay of 2P-Ps into gamma rays by 243 nm. Analysis is ongoing to check the reproducibility of room temperature data and see the temperature dependence. Positron beam 50 Hz time Laser 10 Hz 20 ms 1 s 1 s 1 s 1 s 1 s Laser ON OFF Laser timing Average waveform of the scintillator signal. Amplitude (V) Amplitude (V) Laser ON Laser OFF Laser ON 0.5 Laser ON Amplitude (V) Laser OFF magnified 0.2 Laser timing 0.1 0.02 Laser e+ 0.05 **OFF** 0.02 200 300 400 0 100 200 300 Time (ns) **2024/10/30** Time (ns) **21** Oral-12, Session D3-1

Summary

We want to realize an **antimatter quantum condensate** = positronium Bose-Einstein condensate (Ps-BEC). **Gamma-ray lasers** may be realized using Ps-BEC as a source.

- A) High-density Ps formation
	- 1. Positron focusing
	- 2. Ps formation material
- B) Rapid Ps cooling
	- 3. Thermalization
	- 4. Laser cooling